In Hymenoptera and Heteroptera, the absence of micropyles is one criterion for categorizing an egg as trophic. Undeveloped eggs are observed in more than 90% of the egg clusters of the ladybird beetle Harmonia axyridis Pallas. Traditionally, these undeveloped eggs are regarded as "trophic eggs." The surfaces of the eggs of H. axyridis were examined using scanning electron microscopy and the presence of micropyles in the shells of developing and undeveloped eggs determined. Micropyles are circularly distributed around the top of eggs and present in both developing and undeveloped eggs. The number of micropyles in the shells of developing and undeveloped eggs did not differ significantly. Our results indicate that the undeveloped eggs of H. axyridis have micropyles, suggesting that the mechanisms regulating the production of undeveloped eggs in H. axyridis differ from those resulting in the production of trophic eggs by Hymenoptera and Heteroptera.
The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called ''epidermal covering'' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of ~0.3 µm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook ''epidermal covering'' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.
Using scanning and transmission electron microscopy, ultrastructure of the anterior organ and posterior funnel-shaped canal of Gyrocotyle urna Wagener, 1852 (Cestoda: Gyrocotylidea) from ratfish, Chimaera monstrosa (Holocephali), was studied for the first time. The proper anterior organ is localised at a short distance (about 170 µm) from an apical pore surrounded by a receptor field, whereas its distal end is marked by a muscular sphincter. The tegumental surface of this organ is covered with short filitriches of irregular length; large area of muscle layers traverse beneath the tegumental layer. The funnel-shaped canal of G. urna (2.5-3.0 mm long) is a specialised, muscular part of the posterior attachment organ; it opens on the rounded elevation on the dorsal body surface. The tegumental layer bears conical sclerite-like structures (up to 1.5 µm long). It produces electron-dense bodies that are transported into a canal lumen and surrounded thick muscle area mixed with numerous nerve fibres. The present ultrastructural study of G. urna indicates that gyrocotylideans share some ultrastructural characters of the anterior organ with spathebothriidean cestodes with a single anterior attachment sucker-like organ. In contrast, the unique posterior rosette attachment organ with funnel-shaped canal of the Gyrocotylidea resembles the haptor of polyopisthocotylean monogeneans in its position at the posterior end of the body and presumed origin. The above-mentioned features add more clarity to support the basal position of the Gyrocotylidea Poche, 1926 among cestodes. In addition, they also indicate a possible relationship of gyrocotylidean ancestors with monogeneans., Larisa G. Poddubnaya, Roman Kuchta, Glenn A. Bristow, Tomáš Scholz., and Obsahuje bibliografii