Emergence of Coenagrion mercuriale and Ceriagrion tenellum was examined in a mixed population at their northern range margin in Britain. Mortality at emergence was quantified in C. mercuriale. Consistent with their larval diapause characteristics, both species had an asynchronous emergence pattern, typical of "summer" species. Daily emergence of C. mercuriale was positively correlated with the duration of sunlight on the previous day (controlling for season) and its emergence period was found to be shorter than that observed in its core populations in Central and Mediterranean Europe. No differences were found between the patterns of emergence of the sexes in either species. Sex ratio at emergence differed significantly from 1:1 (at 1.35 : 1 - males : females) in C. mercuriale but not in Ceriagrion tenellum (at 1.04 : 1). Body size at emergence declined more steeply with time in females than in males of C. mercuriale because large size may confer a greater reproductive advantage in females (larger females may be more fecund) than males in non-territorial odonates. Percentage mortality of C. mercuriale at emergence was low (4.9% including deformed individuals), the main cause of mortality being deformity.
Co-occurrence of species with similar trophic requirements, such as odonates, seems to depend both on them occupying different microhabitats and differing in their life-cycles. The life cycles of the dragonflies Boyeria irene and Onychogomphus uncatus were studied in two consecutive years, mainly by systematic sampling of larvae in seven permanent head courses that constitute the upper basin of the River Águeda, western Spain, in the central part of the ranges of these two species. The size ranges of the last five larval stadia of both species were established based on biometric data. The eggs of the egg-overwintering aeshnid hatched in late spring and early summer and for the gomphid hatching peaked in middle-late summer. Both species showed mixed voltinism with "cohort splitting". B. irene had a dominant three-year development (partivoltinism), with some developing in two years (semivoltinism). O. uncatus requires four, sometimes three years to complete development (all partivoltine). B. irene larvae spent the winter before emergence in the last three, maybe four stadia, as a "summer species". O. uncatus mainly behaved as a "spring species", most larvae spending the last winter in the final larval stadium.
Voltinism and larval growth pattern were investigated in an edge-of-range population of Coenagrion mercuriale. Coenagrion mercuriale is semi-voltine in Britain and growth is inhibited in winter. The 2nd year group overwinters in a range of instars between the antepenultimate and final instar consistent with the early, asynchronous emergence pattern of this species. A facultative autumnal diapause in the penultimate instar is the most likely mode of seasonal regulation. The broad size distribution of larvae produced by this growth pattern was wider than that found in co-occurring populations of Pyrrhosoma nymphula, a "spring" species with synchronous emergence. The broad size distributions may lead to considerable intraspecific interference between C. mercuriale larvae. Sex ratio in the last three larval instars of C. mercuriale did not differ significantly from unity. A laboratory investigation of the effect of temperature and photoperiod on growth and diapause in C. mercuriale is recommended to determine whether high minimum temperature thresholds for development limit both the width of the temporal niche and microhabitat use by this species at its range margin.