We examined 126 wild tortoises to evaluate the shell changes due to sexual dimorphism and ontogenesis by the geometric morphometrics. Adult body shape varies substantially in males and females; adults showed different ontogenetic patterns between sexes: in females the posterior portion of the carapace narrows in the dorsal view, the carapace tends to assume a pyriform shape in the lateral view, and the plastron tends to lengthen of the midline and shows a slight lateral enlargement. Male shape changes towards the posterior portion of the carapace, a bending of the seam between marginal and pleural scutes, allowing the body to assume a hemispherical shape, and ventrally, the plastron narrows strongly, posteriorly. The latter feature was mainly due to the shortening of the anal scutes, probably facilitating copulation by allowing more space to move the long tail. A wider posterior in male angulate tortoises may convey greater stability in male-to-male combat. All the ontogenetic changes suggest a modification of the plastron formula, an important feature for chelonian systematics and taxonomy.
We examined whether dispersal was associated with body and wing morphology and individual quality, and whether such an association was sex-specific, in the Glanville fritillary butterfly Melitaea cinxia (L.) in Paldiski on the north coast of Estonia. Body weight, size and shape of both fore- and hindwing, wing aspect ratio and wing loading were used as measures of body and wing morphology. Fluctuating asymmetry (FA) of wing shape was used as a measure of individual quality. Males and females did not differ in dispersal rates, despite large differences in overall morphology and FA. Females had a significantly higher wing loading and aspect ratio, but a lower FA than males. Females, but not males, that dispersed differed in forewing shape from those that did not disperse. The sex-specifity of the covariation between dispersal and forewing shape is most probably due to wing shape being associated with different life-history traits in both sexes, resulting in different selection pressures on wing shape in each of the sexes.