We examined whether dispersal was associated with body and wing morphology and individual quality, and whether such an association was sex-specific, in the Glanville fritillary butterfly Melitaea cinxia (L.) in Paldiski on the north coast of Estonia. Body weight, size and shape of both fore- and hindwing, wing aspect ratio and wing loading were used as measures of body and wing morphology. Fluctuating asymmetry (FA) of wing shape was used as a measure of individual quality. Males and females did not differ in dispersal rates, despite large differences in overall morphology and FA. Females had a significantly higher wing loading and aspect ratio, but a lower FA than males. Females, but not males, that dispersed differed in forewing shape from those that did not disperse. The sex-specifity of the covariation between dispersal and forewing shape is most probably due to wing shape being associated with different life-history traits in both sexes, resulting in different selection pressures on wing shape in each of the sexes.
Thermal requirements for flight in butterflies is determined by a combination of external factors, behaviour and physical constraints. Thorax temperature of 152 butterflies was monitored with an infra-red thermometer in controlled laboratory conditions. The temperature at take-off varied from 13.4°C, for a female Heteronympha merope to 46.3°C, for a female Junonia villida. Heteronympha merope, an understorey species, had the lowest recorded take-off temperatures, with females flying at a much lower thorax temperatures than males. Among the tested butterfly species, warming-up rate was positively correlated with take-off temperature and negatively with body mass. Wing loading is a major variable in determining the thorax flight temperature. Butterflies with the highest wing-loadings experienced the highest thorax temperatures at take-off. A notable exception to this rule is Trapezites symmomus, the only Hesperiidae of our data set, which had thorax flight temperatures of 31.5°C and 34.5°C, well within the range of the observed butterflies, despite a wing load ca. five times higher. The high thorax temperature recorded in J. villida is probably linked to its high flight speed. The results highlight the importance of physical constraints such as body size on the thermal requirements for flight across a range of butterfly species., Gabriel Nève, Casey Hall., and Obsahuje bibliografii