In this paper, we introduce a new linear programming second-order stochastic dominance (SSD) portfolio efficiency test for portfolios with scenario approach for distribution of outcomes and a new SSD portfolio inefficiency measure. The test utilizes the relationship between CVaR and dual second-order stochastic dominance, and contrary to tests in Post \cite{Post} and Kuosmanen \cite{Kuosmanen}, our test detects a dominating portfolio which is SSD efficient. We derive also a necessary condition for SSD efficiency using convexity property of CVaR to speed up the computation. The efficiency measure represents a distance between the tested portfolio and its least risky dominating SSD efficient portfolio. We show that this measure is consistent with the second-order stochastic dominance relation. We find out that this measure is convex and we use this result to describe the set of SSD efficient portfolios. Finally, we illustrate our results on a numerical example.
In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a δ-SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and δ-SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new SSD and δ-SSD portfolio efficiency measures as measures of the stability. We derive a non-linear and mixed-integer non-linear programs for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures, these new measures allow us to compare any two δ-SSD efficient or SSD efficient portfolios. Finally, using historical US stock market data, we compute δ-SSD and SSD portfolio efficiency measures of several SSD efficient portfolios.
Optimization problems depending on a probability measure correspond to many applications. These problems can be static (single-stage), dynamic with finite (multi-stage) or infinite horizon, single- or multi-objective. It is necessary to have complete knowledge of the "underlying" probability measure if we are to solve the above-mentioned problems with precision. However this assumption is very rarely fulfilled (in applications) and consequently, problems have to be solved mostly on the basis of data. Stochastic estimates of an optimal value and an optimal solution can only be obtained using this approach. Properties of these estimates have been investigated many times. In this paper we intend to study one-stage problems under unusual (corresponding to reality, however) assumptions. In particular, we try to compare the achieved results under the assumptions of thin and heavy tails in the case of problems with linear and nonlinear dependence on the probability measure, problems with probability and risk measure constraints, and the case of stochastic dominance constraints. Heavy-tailed distributions quite often appear in financial problems \cite {Meer 2003)} while nonlinear dependence frequently appears in problems with risk measures \cite {Kan (2012a),Pflu (2007)}. The results we introduce follow mostly from the stability results based on the Wasserstein metric with the "underlying" L1 norm. Theoretical results are completed by a simulation investigation.