The prediction of traffic volume over time is very important to control the flow of traffic on a road network. Traffic count is usually averaged over time to predict for the larger time domain. This paper aims at finding the detail variation of a systematic survey of hourly traffic volume data over a time of four years along the North Bengal corridor of Bangladesh (at Jamuna toll collection point) and its equivalent numerical model by using a Artificial Neural Network. The Neural Network is trained with the intermittent data of 13 weeks over four years and the missing data is interpreted with quite reasonable accuracy (12.67% MAE) with this ANN model. The ANN model captured the variety of trends of the traffic data very accurately as has been depicted in the paper