Konečné produkty pokročilé glykace (advanced glycation end products – AGEs) hrají významnou roli v patogenezi řady chronických onemocnění a jejich komplikací, především diabetických komplikací, aterosklerózy, komplikací chronických onemocnění ledvin a neurodegenerativních onemocnění. Tyto látky vznikají neenzymatickou glykací a jejich tvorba je potencována vlivem karbonylového stresu. AGEs tvoří heterogenní skupinu látek a patří mezi ně např. karboxymetyllyzin, pentozin, metylglyoxallyzin dimer, vesperlyzin, imidazolony a další. AGEs jednak modifikují proteiny a mění jejich fyzikální a chemické vlastnosti, jednak mají účinky zprostředkované přes receptory, z nichž nejznámější, ale ne jediný, je receptor RAGE (receptor pro konečné produkty pokročilé glykace). RAGE je receptor multiligandový, váže také HMGB1 (high mobility group box protein 1), S100 proteiny či amyloidové fibrily. Vazba ligand na tento receptor má za následek aktivaci řady signálních cest včetně indukce oxidačního stresu a aktivace nukleárního faktoru κB a následnou prozánětlivou odpověď v závislosti na buněčném typu. AGEs a RAGE se spolu s dalšími mechanizmy – hexosaminovou cestou, polyolovou cestou, poruchou metabolizmu lipidů, aktivací proteinkinázy C, oxidačním stresem a zánětlivou reakcí spoluúčastní v patogenezi diabetických komplikací. Terapeuticky je možné snižovat endogenní tvorbu AGEs, ovlivnit přísun AGEs do organizmu stravou a jejich absorpci ve střevě či stimulovat jejich degradaci. Klíčová slova: AGEs – diabetes mellitus – karbonylový stres – konečné produkty pokročilé glykace – oxidační stres – RAGE – receptor pro AGEs – sRAGE – zánět, Advanced glycation end products (AGEs) play an important role in the pathogenesis of chronic diseases and their complications, especially diabetic complications, atherosclerosis, complications of chronic kidney diseases and neurodegenerative diseases. These substances are formed via non-enzymatic glycation and their formation is potentiated in case of carbonyl stress. AGEs are represented by a heterogeneous group of compounds, e.g. carboxymethyllysine, pentosine, methylglyoxallysin dimer, vesperlysine, imidazolones etc. AGEs can modify proteins and so change their physical and chemical properties and can act also via specific receptors, among them RAGE (receptor for advanced glycation end products) is the best known but not the unique one. RAGE is a multiligand receptor capable to bind also HMGB1 (high mobility group box protein 1), S100 proteins or amyloid fibrils. RAGE – ligand interactions results to activation of a variety of signaling pathways including oxidative stress and activation of nuclear factor κB and subsequent proinflammatory response depending on the cell type. AGEs and RAGE together with further mechanisms – hexosamine pathway, polyol pathway, lipid metabolism disorder, activation of proteinkinase C, oxidative stress and inflammatory reaction take part in the pathogenesis of diabetic complications. Terapeuticaly it is possible to decrease endogenous formation of AGEs, influence the AGEs intake to the organism and their absorption in the intestine or stimulate their degradation. Key words: AGEs – advanced glycation end-products – carbonyl stress – diabetes mellitus – inflammation – oxidative stress – RAGE – receptor for AGEs – sRAGE, and Marta Kalousová, Tomáš Zima
Ateroskleróza jako zánětlivé postižení cévní stěny má více forem, které se vyskytují většinou současně. Klasická aterosklerotická léze charakterizovaná akumulací lipidů v subendoteliálním prostoru bývá často provázena změnami v hlubších vrstvách arteriální stěny, které jsou typické zmnožením extracelulární matrix a aktivací hladkosvalových buněk. Vlivem skladby rizikových faktorů může dominovat jeden nebo druhý typ postižení. Zatímco v patogenezi klasické formy aterosklerózy hrají zásadní roli aterogenní lipoproteiny (především třídy LDL), při rozvoji změn arteriální medie to jsou jiné rizikové faktory, např. hyperaktivita systému renin-angiotenzin-aldosteron (RAS). Ovlivněním těchto dvou základních mechanizmů prokazatelně zpomalujeme progresi cévních změn a příznivě ovlivňujeme prognózu nemocných. Důležitý je i fakt, že současné působení na tyto faktory má synergické působení doložené na úrovni experimentální i klinické. Důsledné využití možností nabízené intenzivním snižováním hladin aterogenních lipidů i nadměrné aktivity systému RAS snižuje riziko typických aterotrombotických komplikací (akutní koronární syndrom) i příhod podmíněných větší měrou změnami arteriální medie či hypertrofií levé komory srdeční (maligní arytmie, srdeční selhání). Tyto dva směry tak představují předpoklady úspěchu kardiovaskulární prevence. Klíčová slova: ateroskleróza – dyslipidemie – kardiovaskulární prevence – RAS – systémový zánět, Atherosclerosis as an inflammatory process affecting vessel wall has more forms usually occurring together. Classical atherosclerotic vascular lesion characterised by lipid accumulation in the subendothelial space is frequently accompanied by changes in deeper layers of arterial wall, in which increased extracellular tissue mass and smooth muscle cells activation represent the most prominent feature. Due to a specific constellation of risk factors the first or second pathology may be more expressed. While initiation and progression of classical atherosclerosis are mostly driven by lipoproteins (especially of LDL class) the most important factor of arterial media changes seem to be different risk factors e.g. hyperactivity of renin-angiotensin-aldosterone system (RAS). Influencing these two basic pathogenic mechanisms undoubtedly slows down the course of vascular changes and impacts positively on the prognosis of the patients. It is noteworthy, that simultaneous targeting of both of these mechanisms yields synergistic effects as evidenced both by experimental and clinical works. Using the opportunities offered by intensive lowering of atherogenic plasma lipids and over activation of the RAS system reduce not only the incidence of typical atherotromobotic complications (e.g. acute coronary syndrome) but also the events caused by changes of medial part of arterial wall or left myocardial ventricle (malignant arrhythmia, heart failure). These two strategies represent necessary conditions for successful cardiovascular prevention. Key words: atherosclerosis – cardiovascular prevention – dyslipidemia – RAS system – systemic inflammation, and Michal Vrablík
Background and objective: Investigation of the effects of MnTnHex-2-PyP on some markers of inflammation and lipid peroxidation in an asthma mice model. Methods: The experiment was carried out on 24 female mice C57Bl/6, divided into four groups: group 1, controls; group 2, injected with ovalbumin (OVA); group 3, treated with MnTnHex-2-PyP and group 4, treated with OVA and MnTnHex-2-PyP. The animals from groups 1 and 3 were injected i.p. on days 0 and 14 with a 100 μl phosphate-buffered saline (PBS), and those from groups 2 and 4 were injected with a 100 μl ovalbumin solution, containing 20 μg OVA. On days 24, 25 and 26 the mice from groups 1 and 2 were inhaled with PBS for 30 min, and those from groups 2 and 4 were given a 1% ovalbumin solution. One hour before inhalation, and 12 hours later the animals from groups 1 and 2 were injected i.p. with 100 μl PBS, and those from groups 3 and 4 received a 100 μl MnTnHex-2-Pyp solution in PBS сontaining 0.05mg/kg. Results: Ovalbumin alone (group 2) increased the total cell number, total protein content, the levels of IL-4, IL-5 and 8-isoprostane in bronchoalveolar lavage. Elevations were observed in IgE level in serum, and the malone dialdehyde (MDA) content in the lung homogenate. These markers were decreased significantly in group 4 as compared to the OVA group. Conclusions: MnTnHex-2-Pyp reduces the inflammation and lipid peroxidation in Ovalbumin-induced mice asthma model, Veneta Shopova, Lyudmil Terziev, Violeta Dancheva, Galya Stavreva, Milena Atanasova, Angelina Stoyanova, Tzvetan Lukanov, and Literatura