Právní informatika v tomto roce slaví v České republice 50 let od svého založení. Její zakladatel, V. Knapp, ji koncipoval jako speciální obor zabývající se aplikací exaktních metod na právní jevy. Ačkoliv vlivem překotného technologického vývoje se od původních Knappových představ mnohé změnilo, základní orientace jim vytýčená však zůstává stejná. Jde o přesvědčení, že exaktní postupy činěné ve spolupráci lingvistů, matematiků a informatiků mohou přinést nové pohledy na právo, jak v oblasti teoretické, tak praktické. Orientace současného výzkumu v ČR na studium právního jazyka, právní ontologie a automatické zpracování právních textů s lingvistickou podporou, prováděná na rozsáhlých právních databázích se ubírá cestou zcela srovnatelnou s podobnými výzkumy prováděnými v Evropě i USA. V oblasti aplikací to není teorie, která zaostává, ale především státoprávní praxe. Je např. neuvěřitelné, že český stát nebyl dodnes schopen ani vytvořit centrální právní informační systém, ačkoliv jej Knapp v projektu ASPI navrhoval již v 70. letech. Knapp předpověděl v oblasti právní informatiky řadu aplikací a provedl dodnes inspirativní výzkumy. Vytvořil tak tradici, která je stále živá a hodná následování. and This year marks the celebration of 50 years from the foundation of legal informatics in the Czech Republic.V. Knapp, its founder, designed it as a special branch concerning the application of exact methods of legal phenomena.Although the original Knapp’s ideas have been changed by the
influence of rapid technology development, the basic orientation which was set up by him remains the same. It concerns the persuasion that exact procedures conducted with the cooperation of linguists, mathematics and informatics can bring new views to the law in the area of theory as well as practice. The orientation of contemporary research of the study of the legal language, the legal ontology and the automatic processing of legal texts with the linguistic support, which is provided by extensive legal databases in the Czech Republic, is aimed to the same target as the similar ones in Europe and the USA. In the area of application it is not the theory that lags behind but primarily the legal praxis of the state. For example it is unbelievable that the Czech state has not been able to create a central legal information system yet, although Knapp projected it in the project ASPI during the 70s. Knapp predicted in the area of legal informatics many applications and he conducted research which remains inspiring up to now. He created a tradition which is still alive and it is suitable to be followed.
In this experiment we studied the effect of different pedalling rates during cycling at a constant power output (PO) 132±31 W (mean±S.D.), corresponding to 50 % V02 max, on the oxygen uptake and the magnitude of the slow component of V02 kinetics in humans. The PO corresponded to 50 % of V02 max, established during incremental cycling at a pedalling rate of 70 rev.min-1. Six healthy men aged 22.2 ±2.0 years with V02 max 3.89 ±0.92 l.min-1, performed on separate days constant PO cycling exercise lasting 6 min at pedalling rates 40, 60, 80, 100 and 120 rev.min-1, in random order. Antecubital blood samples for plasma lactate [La]pi and blood acid-base balance variables were taken at 1 min intervals. Oxygen uptake was determined breath-by-breath. The total net oxygen consumed throughout the 6 min cycling period at pedalling rates of 40, 60, 80, 100 and 120 rev.min-1 amounted to 7.727± 1.197, 7.705± 1.548, 8.679± 1.262, 9.945± 1.435 and 13.720± 1.862 1, respectively for each pedalling rate. The VO2 during the 6 min of cycling only rose slowly by increasing the pedalling rate in the range of 40-100 rev.min-1. This increase, was 0.142 1 per 20 rev.min-1 on the average. Plasma lactate concentration during the sixth minute of cycling changed little within this range of pedalling rates: the values were 1.83 ±0.70, 1.80 ± 0.48, 2.33 ±0.88 and 2.52 ±0.33 mmoLl-1. The values of [La]pi reached in the 6th minute of cycling were not significantly different from the pre-exercise levels. Blood pH was also not affected by the increase of pedalling rate in the range of 40-100 rev.min-1. However, an increase of pedalling rate from 100 to 120 rev.min-1 caused a sudden increase in the VO2 amounting to 0.747 1 per 20 rev.min-1, accompanied by a significant increase in [La]pj from 1.21 ±0.26 mmol.l-1 in pre-exercise conditions to 5.92±2.46 mmol.l-1 reached in the 6th minute of cycling (P<0.01). This was also accompanied by a significant drop of blood pH, from 7.355 ±0.039 in the pre-exercise period to 7.296 ± 0.060 in the 6th minute of cycling (P<0.01). The mechanical efficiency calculated on the basis of the net VO2 reached between the 4th and the 6th minute of cycling amounted to 26.6 ±2.7, 26.4±2.0, 23.4±3.4, 20.3 ±2.6 and 14.7±2.2 %, respectively for pedalling rates of 40, 60, 80,100 and 120 rev.min-1. No significant increase in the VO2 from the 3rd to the 6th min (representing the magnitude of the slow component of V02 kinetics) was observed at any of the pedalling rates (-0.022±0.056, -0.009±0.029, 0.012±0.073, 0.030±0.081 and 0.122±0.176 l.min-1 for pedalling rates of 40, 60, 80, 100 and 120 rev.min-1, respectively). Thus a significant increase in [La]pi and a decrease in blood pH do not play a major role in the mechanism(s) responsible for the slow component of VO2 kinetics in
humans.