Erythromycin has a well-known dual effect on the contractility of the gastrointestinal system and recently has also been shown to inhibit contractions of the rat myometrium. The aim of the present study was to investigate the effects of clarithromycin on oxytocin, prostaglandin F2a (PGF2a) and KCl-induced contractions of human myometrium in vitro. Myometrial strips were obtained from pregnant women undergoing elective Cesarean section and the strips were suspended in a jacketed organ bath filled with Krebs solution at 37 oC (pH 7.4) and continuously aired with 95 % oxygen and 5 % carbon dioxide. Isometric contractions were measured using a force displacement transducer. Oxytocin, PGF2a, KCl and clarithromycin were applied to the tissue bath and the amplitude and frequency of contractions were evaluated at 20-min intervals. Freidmann analysis of variance, Kruskal Wallis and Wilcoxon Rank tests were used for statistical analysis of the data. Clarithromycin dose dependently inhibited the amplitude of contractions independent of the stimulus. Pre-treatment with apamin prevented clarithromycin-induced effects on amplitude and frequency of contractions. We conclude that the macrolide antibiotic clarithromycin may have a direct inhibitory effect on contractions of human myometrium., H. Celik, A. Ayar., and Obsahuje bibliografii
Previous results have suggested that orexins causes a rise of intracellular free calcium ([Ca2+]i) in cultured rat dorsal root ganglion (DRG) neurons, implicating a role in nociception, but the underlying mechanism is unknown. Hence, the aim of the present study was to investigate whether the orexins-mediated signaling involves the PKC pathways in these sensory neurons. Cultured DRG neurons were loaded with 1 μmol Fura-2 AM and [Ca2+]i responses were quantified by the changes in 340/380 ratio using fluorescence imaging system. The orexin-1 receptor antagonist SB-334867-A (1 μM) inhibited the calcium responses to orexin-A and orexin-B (59.1±5.1 % vs. 200 nM orexin-A, n=8, and 67±3.8 % vs. 200 nM orexin-B, n=12, respectively). The PKC inhibitor chelerythrine (10 and 100 μM) significantly decreased the orexin-A (200 nM)-induced [Ca2+]i increase (59.4±4.8 % P<0.01, n=10 and 4.9±1.6 %, P<0.01, n=9) versus response to orexin-A). It was also found that chelerythrine dose-dependently inhibited the [Ca2+]i response to 200 nM orexin-B. In conclusion, our results suggest that orexins activate intracellular calcium signaling in cultured rat sensory neurons through PKC-dependent pathway, which may have important implications for nociceptive modulation and pain., M. Ozcan ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Reactive oxygen species can be generated by daily exposure of the skin to ultraviolet light and may cause some subchronic and chronic skin disorders. The aim of this study was to investigate a possible preventive role of a-tocopherol acetate (ATA) on ultraviolet B (UVB) induced peroxidation by assessing lipid peroxide (LPO) levels and activity of reactive oxygen scavenging enzymes including glutathione peroxidase and superoxide dismutase (SOD) in guinea pigs. ATA was topically applied to the skin for three weeks before a single dose of 0.9 J/cm2 UVB irradiation on the skin and lipid peroxide levels and antioxidants in plasma, skin and liver and erythrocytes were determined after decapitation. Topical application of ATA prevented the UVB irradiation-induced reduction of scavenging enzyme activities in skin and erythrocytes. In conclusion, we suggest that topical applications of ATA before UVB irradiation is effective in protecting the skin from unwanted effects of UVB irradiation., Y. Saral, B. Uyar, A. Ayar, M. Naziroglu, S. Yilmaz., and Obsahuje bibliografii
It is well known that the training level of a muscle belongs to the parameters that affect the H-reflex response amplitude. The aim of this study was to investigate the effects of training type on H- and T-reflex response parameters. For this purpose, 20 long-distance athletes (group I, test group), 18 short-distance athletes (group II, test group) and 20 non-trained subjects (group III, control group) were involved in this study in which the H- and T-reflex amplitude and latency values were measured. The H-reflex amplitude and latency values found in groups I, II and III were 3.64±0.28 mV and 26.88±1.45 ms, 3.17±0.26 mV and 26.19±1.89 ms, and 6.07±0.34 mV and 26.77±1.32 ms, respectively. The T-reflex amplitude and latency values of the groups I, II and III were 3.30±0.18 mV and 32.01±1.02 ms, 3.11±0.20 mV and 31.47±1.16 ms, 4.24±0.21 mV and 31.47±1.16 ms, respectively. There was no statistically significant difference between the groups with respect to latencies of H- and T-reflexes (p>0.05). In both test groups, the amplitudes of the H-reflex and T-reflex were significantly smaller than the control group (p<0.05). The results of this study suggest that training of muscles affect the H- and T-reflex response parameters., R. Ozmerdivenli, S. Bulut, T. Urat, A. Ayar., and Obsahuje bibliografii
We investigated the actions of dantrolene Ca2+-induced on Ca2+-release (CICR) evoked by action potentials in cultured rat sensory neurons. The effect of dantrolene on action potential after-depolarization and voltage-activated calcium currents was studied in cultured neonatal rat dorsal root ganglion cells (DRG) using the whole-cell patch-clamp technique. Depolarizing current injection evoked action potentials and depolarizing after-potentials, which are activated as a result of CICR following a single action potential in some cells. The type of after-potentials was determined by inducing action potentials from the resting membrane potential. Extracellular application of dantrolene (10 mM) abolished after-depolarizations without affecting action potential properties. Furthermore, dantrolene significantly reduced repetitive action potentials after depolarizing current injection into these neurons, but had no significant effect on the steady-state current voltage relationship of calcium currents in these neurons. We conclude that dantrolene inhibits the induction of action potential after depolarizations by inhibiting CICR in cultured rat sensory neurons., A. Ayar, H. Kelestimur., and Obsahuje bibliografii