Anaerobic threshold which describes the onset of systematic increase in blood lactate concentration is a widely used concept in clinical and sports medicine. A deflection point between heart rate-work rate has been introduced to determine the anaerobic threshold non-invasively. However, some researchers have consistently reported a heart rate deflection at higher work rates, while others have not. The present study was designed to investigate whether the heart rate deflection point accurately predicts the anaerobic threshold under the condition of acute hypoxia. Eight untrained males performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and one breathing 12 % O2. The anaerobic threshold was estimated using the V-slope method and determined from the increase in blood lactate and the decrease in standard bicarbonate concentration. This threshold was also estimated by in the heart rate-work rate relationship. Not all subjects exhibited a heart rate deflection. Only two subjects in the control and four subjects in the hypoxia groups showed a heart rate deflection. Additionally, the heart rate deflection point overestimated the anaerobic threshold. In conclusion, the heart rate deflection point was not an accurate predictor of anaerobic threshold and acute hypoxia did not systematically affect the heart rate-work rate relationships.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.41.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.910.10 l/min (for the VE/VO2) vs. 1.890.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.670.1 l/min (for the lactate) vs. 1.370.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.
The aim of this study was to investigate the relationship between cardiopulmonary fitness as indicated by maximal work rate (Wmax) production and aerobic capacities (WAT), body mass index (BMI) and heart rate reserve. A total of 60 sedentary subjects (30 males, 30 females, aged 18-25 years) were enrolled in the study. Each subject performed an incremental exercise test (15 W/min) to the limit of tolerance on an electromagnetically-braked cycle ergometer. There was a negative correlation between increased BMI to Wmax capacity per kilogram body weight in male (r=–0.846, P=0.0001) and in female (r=–0.896, P=0.0001) subjects. In addition, WAT for each kilogram body weight also negatively correlated with increased BMI in male (r=–0.870, P=0.0001) and in females (r=–0.807, P=0.0001). The heart rate reserve correlated negatively with increasing BMI: r=–0.699, P=0.0001 (males) and r=–0.655, P=0.0001 (females). The results of the present study have suggested that, due to the inverse correlation between BMI, Wmax capacity, aerobic fitness and heart rate reserve, it may be useful to consider BMI in establishing cardiopulmonary fitness in various subjects.
Previous results have suggested that orexins causes a rise of intracellular free calcium ([Ca2+]i) in cultured rat dorsal root ganglion (DRG) neurons, implicating a role in nociception, but the underlying mechanism is unknown. Hence, the aim of the present study was to investigate whether the orexins-mediated signaling involves the PKC pathways in these sensory neurons. Cultured DRG neurons were loaded with 1 μmol Fura-2 AM and [Ca2+]i responses were quantified by the changes in 340/380 ratio using fluorescence imaging system. The orexin-1 receptor antagonist SB-334867-A (1 μM) inhibited the calcium responses to orexin-A and orexin-B (59.1±5.1 % vs. 200 nM orexin-A, n=8, and 67±3.8 % vs. 200 nM orexin-B, n=12, respectively). The PKC inhibitor chelerythrine (10 and 100 μM) significantly decreased the orexin-A (200 nM)-induced [Ca2+]i increase (59.4±4.8 % P<0.01, n=10 and 4.9±1.6 %, P<0.01, n=9) versus response to orexin-A). It was also found that chelerythrine dose-dependently inhibited the [Ca2+]i response to 200 nM orexin-B. In conclusion, our results suggest that orexins activate intracellular calcium signaling in cultured rat sensory neurons through PKC-dependent pathway, which may have important implications for nociceptive modulation and pain., M. Ozcan ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Melatonin, the main hormone of the pineal gland, informs the body about the environmental light and darkness regimen, which in turn contributes to the photoperiodic adaptation of several physiological functions. Leptin, the hormone secreted mainly by adipocytes and some other tissues including the pituitary, informs the brain about the mass of adipose tissue, which plays an important role in energy homeostasis. Melatonin has been shown to decrease circulating leptin levels. It is currently not known whether melatonin has an effect on leptin synthesis in the pituitary. The aim of this study was to immunohistochemically examine the effects of pinealectomy and administration of melatonin on leptin production in the rat anterior pituitary. The pituitary samples obtained from 18 male Wistar rats including sham-pinealectomized, pinealectomized and melatonin-injected pinealectomized groups were immunohistochemically evaluated. Immunostaining of leptin was moderate (3+) in sham-pinealectomized rats, heavy (5+) in pinealectomized rats and low (1+) in melatonin-treated pinealectomized rats, respectively. The present results indicate that pinealectomy induces leptin secretion in anterior pituitary cells, and this increase of leptin synthesis can be prevented by administration of melatonin. Thus, melatonin seems to have both physiological and pharmacological effects on leptin production in the anterior pituitary of male rats.
We investigated the actions of dantrolene Ca2+-induced on Ca2+-release (CICR) evoked by action potentials in cultured rat sensory neurons. The effect of dantrolene on action potential after-depolarization and voltage-activated calcium currents was studied in cultured neonatal rat dorsal root ganglion cells (DRG) using the whole-cell patch-clamp technique. Depolarizing current injection evoked action potentials and depolarizing after-potentials, which are activated as a result of CICR following a single action potential in some cells. The type of after-potentials was determined by inducing action potentials from the resting membrane potential. Extracellular application of dantrolene (10 mM) abolished after-depolarizations without affecting action potential properties. Furthermore, dantrolene significantly reduced repetitive action potentials after depolarizing current injection into these neurons, but had no significant effect on the steady-state current voltage relationship of calcium currents in these neurons. We conclude that dantrolene inhibits the induction of action potential after depolarizations by inhibiting CICR in cultured rat sensory neurons., A. Ayar, H. Kelestimur., and Obsahuje bibliografii