The maize weevil, Sitophilus zeamais (Motschulsky), is a major pest of stored grain kernels. Irradiation is an established technique for controlling insects in stored grain and is a major stress factor affecting these insects. Since heat shock protein (hsp) genes respond to this stress, we proposed that hsps may be associated with irradiated stress tolerance in S. zeamais. The responses of the maize weevil to exposure to ultraviolet-C (UV-C) and microwave irradiation were assessed at four developmental stages: egg, larva, pupa and adult. The results revealed that exposure to UV-C (254 nm, < 8 h) did not affect the survival of the maize weevils; however, Szhsp70, Szhsc70 and Szhsp90 mRNA levels significantly increased during the first 1 h of UV-C exposure. The median lethal time (LT50) of exposure to microwave irradiation indicated that the adult stage was more tolerant of microwave irradiation than the other developmental stages. Microwave irradiation enhanced the expression of the three hsps, but the intensity of up-regulation differed among the three genes, with Szhsp70 the most highly up-regulated. Our experiments revealed that UV-C and microwave irradiation influenced the expression profile of hsp genes in S. zeamais. At the tissue level, the gene responses to UV-C and microwave irradiation varied greatly in different tissues., Jatuporn Tungjitwitayakul, Nujira Tatun, Boongeua Vajarasathira, Sho Sakurai., and Obsahuje bibliografii
The skeletal muscles of animals and humans with type 2 diabetes have decreased oxidative capacity. Aerobic exercise can improve muscle oxidative capacity, but no data are available on the amount of exercise required. We investigated the effects of voluntary running exercise and running distance on the skeletal muscle properties of nonobese rats with type 2 diabetes. Six-week-old male diabetic Goto-Kakizaki rats were divided into nonexercised (GK) and exercised (GK-Ex) groups. The rats in the GK-Ex group were permitted voluntary running exercise on wheels for 6 weeks. Age-matched male Wistar rats (WR) were used as nondiabetic controls. Fasting blood glucose and HbA1c levels were higher in the GK and GK-Ex groups than in the WR group and lower in the GK-Ex group than in the GK group. Succinate dehydrogenase (SDH) activity and peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) mRNA levels in the soleus and plantaris muscles were higher in the WR and GK-Ex groups than in the GK group. HbA1c and total cholesterol levels were negatively correlated with running distance and SDH activity and Pgc-1α mRNA levels in the soleus muscle were positively correlated with running distance. The onset and progression of diabetes in nonobese diabetic rats were effectively inhibited by running longer distances.
Traps baited with plant volatiles and/or bark beetle pheromones have been used to survey for exotic and potentially invasive bark and wood-boring beetles in North America since the mid-1990s. Recent discoveries of sex and aggregation pheromones in the Cerambycidae offer means of improving detection rates of longhorn beetles, but little is known of their effects on detection of bark and ambrosia beetles in the subfamily Scolytinae. Our objectives were to determine the efficacy of host volatile trap lures for survey and detection of Scolytinae species and whether that efficacy was affected by the addition of longhorn beetle pheromones. More than 12,000 specimens and 36 species of Scolytinae were collected in two field trapping bioassays conducted in the Russian Far East in 2009 and 2010. The lure combination of spruce blend (a blend of racemic α-pinene, (-) β-pinene, (+)-3-carene, (+)-limonene, and α-terpinolene) and ethanol significantly increased detection rates and mean catches of Hylastes brunneus Erichson, Hylastes obscurus Chapuis, Ips typographus (L.), and Dryocoetes striatus Eggers compared with unbaited traps. The addition of the longhorn beetle pheromones, E-fuscumol, or E-fuscumol acetate, to traps baited with spruce blend and ethanol, slightly reduced mean catches of D. striatus but otherwise did not affect catch of any Scolytine species. Baiting traps with ethanol significantly increased mean catches of Anisandrus apicalis (Blandford), Anisandrus dispar (Fabr.), Anisandrus maiche (Kurenzov), Xyleborinus attenuatus (Blandford), Xyleborinus saxesenii (Ratzeburg), Xylosandrus germanus (Blandford), Scolytoplatypus tycon Blandford, and Trypodendron lineatum (Olivier). By themselves, the longhorn beetle pheromones, racemic hydroxyhexan-2-one and racemic hydroxyoctan-2-one, were not attractive to any Scolytine species. However, when added to ethanol-baited traps, hydroxyhexan-2-one lures significantly increased mean catch of S. tycon, hydroxyoctan-2-one lures significantly reduced mean catches of A. maiche and X. attenuatus, and lures of either hydroxyketone significantly reduced mean catch of T. lineatum. The lure treatments that detected the greatest number of species per sampling effort were spruce blend plus ethanol in 2009 (16 Scolytinae species and 13 species of Cerambycidae combined in an eight-trap sample) and hydroxyhexan-2-one plus ethanol in 2010 (20 Scolytinae species and 7 species of Cerambycidae combined in an eight-trap sample). Species accumulation curves did not reach an asymptote for any lure treatment, indicating that many species would go undetected in samples of 8-9 traps per site., Jon D. Sweeney, Peter Silk, Vasily Grebennikov, Michail Mandelshtam., and Obsahuje bibliografii
The development of acute respiratory distress syndrome (ARDS) is known to be independently attributable to aspiration-induced lung injury. Mechanical ventilation as a high pressure/volume support to maintain sufficient oxygenation of a patient could initiate ventilator-induced lung injury (VILI) and thus contribute to lung damage. Although these phenomena are rare in the clinic, they could serve as the severe experimental model of alveolar-capillary membrane deterioration. Lung collapse, diffuse inflammation, alveolar epithelial and endothelial damage, leakage of fluid into the alveoli, and subsequent inactivation of pulmonary surfactant, leading to respiratory failure. Therefore, exogenous surfactant could be considered as a therapy to restore lung function in experimental ARDS. This study aimed to investigate the effect of modified porcine surfactant in animal model of severe ARDS (P/F ratio ≤13.3 kPa) induced by intratracheal instillation of hydrochloric acid (HCl, 3 ml/kg, pH 1.25) followed by VILI (VT 20 ml/kg). Adult rabbits were divided into three groups: untreated ARDS, model treated with a bolus of poractant alfa (Curosurf®, 2.5 ml/kg, 80 mg phospholipids/ml), and healthy ventilated animals (saline), which were oxygen-ventilated for an additional 4 h. The lung function parameters, histological appearance, degree of lung edema and levels of inflammatory and oxidative markers in plasma were evaluated. Whereas surfactant therapy with poractant alfa improved lung function, attenuated inflammation and lung edema, and partially regenerated significant changes in lung architecture compared to untreated controls. This study indicates a potential of exogenous surfactant preparation in the treatment of experimental ARDS.
Pitfall traps are widely used for sampling ground-dwelling arthropods. Their sampling efficiency is affected by several factors, e.g. material, size and modification of parts of the trap and sampling design. Pitfall trap sampling is also affected by the accumulation of plant litter in the traps, rain fall and by-catches of small vertebrates, which may cause a bias in the catch by obstructing traps or attracting certain insects. A roof that prevents rain and plant litter entering a trap, prevents dilution of the preservative and escape of arthropods. The main goal of present study was to compare the effect of four types of differently combined funnel and roof pitfall traps on the capture efficiency of epigeal arthropods. We found that a funnel and/or a roof had no effect on spider catches. Total abundance of large carabids and thus the total abundance of ground beetles was lower in funnel pitfall traps without a roof than in other types of traps. However, funnel pitfall traps with roofs collected significantly more carabid beetles, especially individuals of those species that are large or good fliers. We conclude that funnel pitfall traps with roofs have no negative effects on capture efficiency of ground beetles and spiders, therefore application of this sampling technique is strongly recommended.
The outcome of assessments of the biodiversity of a taxonomic group often depend on the sampling method. The choice of an adequate method is especially important for biomonitoring purposes. In this study, the effectiveness of two methods of sampling syrphids (Diptera: Syrphidae) is compared: observation plot method vs. line transect, both sampled by sweep netting. Altogether, 18 meadows were selected in three mountain regions in the Austrian and Swiss Alps. We recorded a significantly higher abundance and richness of syrphids using the observation plot method than the line transect method in 2015. Comparing data for one region recorded in 2015 and 2016, similar results were obtained. Syrphid species assemblages were affected by sampling method in both years. More syrphid species and individuals were recorded using the observation plot method, which makes it more suitable for studies aiming at comparing differences in the numbers of adult syrphids in different grassland habitats., Raja I. Hussain, Ronnie Walcher, David Brandl, Arne Arnberger, Johann G. Zaller, Thomas Frank., and Obsahuje bibliografii
This study aimed to examine the effect of eicosapentaenoic acid (EPA) on skeletal muscle hypertrophy induced by muscle overload and the associated intracellular signaling pathways. Male C57BL/6J mice were randomly assigned to oral treatment with either EPA or corn oil for 6 weeks. After 4 weeks of treatment, the gastrocnemius muscle of the right hindlimb was surgically removed to overload the plantaris and soleus muscles for 1 or 2 weeks. We examined the effect of EPA on the signaling pathway associated with protein synthesis using the soleus muscles. According to our analysis of the compensatory muscle growth, EPA administration enhanced hypertrophy of the soleus muscle but not hypertrophy of the plantaris muscle. Nevertheless, EPA administration did not enhance the expression or phosphorylation of Akt, mechanistic target of rapamycin (mTOR), or S6 kinase (S6K) in the soleus muscle. In conclusion, EPA enhances skeletal muscle hypertrophy, which can be independent of changes in the AKT-mTOR-S6K pathway.
Faecal samples from the rock hyrax (Procavia capensis jayakari Thomas) were collected from the Ibex Reserve in central Saudi Arabia. Eimerian oocysts, which are believed to represent a new species described here as Eimeria tamimi sp. n., were detected in 40 out of 93 samples. Oocysts were fully sporulated in 24-48 hours at 25 ± 2 °C. Sporulated oocysts of E. tamimi sp. n. were ovoid, measuring 35-42 × 19-25 μm (39 × 23 μm), a length/width ratio 1.5-2 (1.7). Oocyst wall was bilayered and measured 1.5 μm in thickness. Micropyle, oocyst residuum and polar granules were not present. Sporocysts are elongate, measuring 12-18 × 9-12 μm (15 × 10 μm), with a length/width ratio 1.1-1.8 (1.5) prominent Stieda bodies and sporocyst residuum. Experimental infection of two clinically healthy rock hyraxes with sporulated oocysts of E. tamimi sp. n. resulted in shedding unsporulated oocysts 5-10 days post infection. Partial sequences of 18S ribosomal RNA (18S rDNA) and cytochrome C oxidase subunit 1 (COI) regions were amplified using the polymerase chain reaction (PCR) and sequenced. Phylogenetic analysis based on 18S rDNA using maximum likelihood (ML) and Bayesian inference (BI) methods revealed that E. tamimi sp. n. grouped with Eimeria quokka Barker, O'Callaghan et Beveridge, 1988, E. mundayi Barker, O´Callaghan et Beveridge, 1988, E. potoroi Barker, O'Callaghan et Beveridge, 1988 and E. gaimardi Barker, O'Callaghan et Beveridge, 1988 marsupials. Eimerian species have been regarded as a paraphyletic group and the present investigation confirmed the conflict between phenotypic traits, used widely in the classification of this group of parasites., Osama B. Mohammed, Manei M. Aljedaie, M. S. Alyousif and Nabil Amor., and Obsahuje bibliografii
Invasive carps are ecologically and economically problematic fish species in many large river basins in the United States and pose a threat to aquatic ecosystems throughout much of North America. Four species of invasive carps: black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), are particularly concerning for native ecosystems because they occupy and disrupt a variety of food and habitat niches. In response, natural resource agencies are developing integrated pest management (IPM) plans to mitigate invasive carps. Control tools are one key component within a successful IPM program and have been a focal point for development by governmental agencies and academic researchers. For example, behavioural deterrents and barriers that block migratory pathways could limit carps range expansion into new areas, while efficient removal methods could suppress established carp populations. However, control tools are sometimes limited in practice due to uncertainty with deployment, efficacy and availability. This review provides an overview of several emerging modelling approaches and control technologies that could inform and support future invasive carp IPM programs.