Climate features that influence life cycles, notably severity, seasonality, unpredictability and variability, are summarized for different polar zones. The zones differ widely in these factors and how they are combined. For example, seasonality is markedly reduced by oceanic influences in the Subantarctic. Information about the life cycles of Arctic and Antarctic arthropods is reviewed to assess the relative contributions of flexibility and programming to life cycles in polar regions. A wide range of life cycles occurs in polar arthropods and, when whole life cycles are considered, fixed or programmed elements are well represented, in contrast to some recent opinions that emphasize the prevalence of flexible or opportunistic responses. Programmed responses ale especially common for controlling the appearance of stages that are sensitive to adverse conditions, such as the reproductive adult. The relative contribution of flexibility and programming to different life cycles is correlated with taxonomic affinity (which establishes the general lifecycle framework for a species), and with climatic zone, the habitats of immature and adult stages, and food., Hugh V. Danks, and Lit
In view of the extremely high metabolic rates involved, insect flight offers a fascinating model system for studying metabolism during exercise, including its regulation by metabolic neurohormones. In our laboratory the African migratory locust, Locusta migratoria, well-known for its long-distance flights, is used as an internationally recognized model insect. The insect is mass-reared under controlled conditions; its size permits convenient handling in vivo and in vitro, while flight activity can be easily evoked. In addition, research on this pest insect may be of economical importance.
A survey of the energy metabolism during locust flight is presented in Fig. 1. Flight activity stimulates the neurosecretory adipokinetic cells in the glandular lobes of the corpus cardiacum, a neuroendocrine gland connected with the insect brain, to release peptide neurohormones, the adipokinetic hormones (AKHs). The target for these hormones is the fat body. Via signal transduction processes, the action of the hormones ultimately results in the mobilization of both carbohydrate and lipid reserves as fuels for flight. Carbohydrate (trehalose) is mobilized from glycogen reserves, implying hormonal activation of the key enzyme, fat body glycogen phosphorylase, by phosphorylation. Similarly, on the lipid side, sn-1,2-diacylglycerol (DAG) is mobilized from stored triacylglycerol (TAG), by hormonal activation of the fat body TAG lipase. The carbohydrate and lipid substrates are transported in the hemolymph to the contracting flight muscles. Carbohydrate provides most of the energy for the initial period of flight, whereas at a later stage, lipid substrate in the blood is increased and gradually takes over. The transport of DAG requires specific lipoprotein carriers (lipophorins) which differ in several respects from the lipoproteins in mammals, and act as a lipid shuttle.
This review is focused on three interrelated topics, covering recent data on the biosynthesis and release of the AKHs, their signal transduction mechanisms in the fat body cells, and the changes in the lipophorin system induced by the AKHs during flight., Dick J. Van Der Horst, Wil J.A. Van Marrewijk, Henk G.B. Vullings, Jacques H.B. Diederen, and Lit
The monophyly of the subgenus Leptempis Collin of the genus Empis L. is established on the basis of a male hypopygial character, and the possibility of a close relationship between the subgenera Leptempis Collin, Planempis Frey and Kritempis Collin is discussed. Seven new species belonging to Empis (Leptempis) rustica-group are described from France, Germany, Greece and Spain: E. (L.) abdominalis sp. n., E. (L.) lamellata sp. n., E. (L.) multispina sp. n., E. (L.) pandellei sp. n., E. (L.) lamellimmanis sp. n., E. (L.) sinuosa sp. n. and E. (L.) trunca sp. n. A key to the E. (L.) rustica-group is presented., Christophe Daugeron, and Lit
Myotropic neuropeptides were isolated from the retrocerebral complex of the stick insect, Carausius morosus, by using three HPLC steps. Bioactivity during purification was measured by heterologous bioassays monitoring the contractions of the hyperneural muscle and hindgut of the American cockroach. Additionally, fractions not active in these bioassays were tested in a homologous bioassay evoking contractions of the hindgut of C. morosus. Peptide sequence analysis and mass spectrometry yielded the following structures: Pro-Phe-Cys-Asn-Ala-Phe-Thr-Gly-Cys-NH2 (CCAP), pGlu-Thr-Phe-Gln-Tyr-Ser-His-Gly-Trp-Thr-Asn-NH2 (His7-corazonin) and Asp-Glu-Gly-Gly-Thr-Gln-Tyr-Thr-Pro-Arg-Leu-NH2 (Cam-PK-1). These neuropeptides are the first myotropins isolated from C. morosus. The most bioactive compound in the homologous bioassay, the C. morosus-hindgut assay, was CCAP., Reinhard Predel, Roland Kellner, Gerd Gäde, and Lit
First stadium juveniles of P. angustus were reared under controlled seasonal conditions to maturity, reproduction and death. Individuals born in any one breeding season either had a 1-year or a 2-year life cycle (cohort-splitting). The life cycle was annual for individuals born in the first part of the breeding season (May-August), but became biennial for those born later (August-October). Two phenomena were involved: (1) Only individuals reaching the penultimate stadium (stadium VII) before a critical period at the end of spring could become adult in the breeding season following that of their birth. After this time, stadium VII individuals entered into aestivation and only became adult in the second autumn after their birth. (2) Females becoming adult in autumn entered reproductive dormancy and only laid eggs in the following spring. Overall, individuals born at the start of the breeding season easily reached stadium VII before the critical period and were able to breed at I year, whereas individuals born at the end of the breeding season reached stadium VII after the critical period, then had two consecutive periods of dormancy and only bred at 2 years age. Individuals from the same nest born in the middle of the breeding season (August) could have either annual or biennial life cycles, depending on whether they reached stadium VII before or during aestivation. The environmental factors capable of triggering aestivation in subadults and reproductive dormancy in autumn-maturing females are discussed., Jean-Francois David, Marie-Louise Celerier, Jean-Jacques Geoffroy, and Lit
The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an endopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Coleoptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Diptera clade is differently interpreted by advocates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (\"orders\") are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of \"key innovations\" promoting evolutionary success (in terms of large species numbers) is fraught with difficulties., Niels P. Kristensen, and Lit
The profile of hemolymph ecdysteroid was studied in the gram pod borer, Helicoverpa armigera, during larval-pupal transformation. The changes closely correspond to the developmental events occurring at metamorphosis. Two insect growth regulators, plumbagin and azadirachtin, significantly depleted the content and altered the profile of ecdysteroids at crucial stages, when applied at ED50 doses. The activity profiles of two fat body lysosomal enzymes, acid phosphatase and b-galactosidase, were also significantly affected by the insect growth regulators. It is suggested that plumbagin and azadirachtin treatments primarily modify the ecdysteroid titer, which in turn leads to changes in lysosomal enzyme activity causing overt morphological abnormalities during the metamorphic molt., Arulappan Josephrajkumar, Bhattiprolu Subrahmanyam, Srinivasan, and Lit
A revision of species of the genus Macroscytus Fieber distributed in Madagascar and adjacent islands is presented. Four previously known species [M. fryeri Distant, M. lobatus Signoret, M. madagascariensis (Signoret), M. privignus Horváth] are redescribed, and lectotypes are designated for three of them. Four new species (M. mayottensis sp. n., M. simulans sp. n., M. tamatavei sp. n., and M. viettei sp. n.) are described and compared with their congeners. A key to all species of the genus known from Madagascar and adjacent islands is also provided., Jerzy A. Lis, and Lit
Myrmica rubra is a northern, temperate Palaearctic ant species with a geographical range that extends from the Atlantic coast of Europe to central Asia. In Europe, its range covers > 25° of latitude where it lives under a variety of climates that vary from extreme oceanic in the west, to continental in the east. Colonies nest in the soil and their life cycles are known to be highly dependent on ambient temperature and soil moisture. We hypothesised that the brood-rearing behaviour of populations might be focally adapted to climate and that we might detect differences when the ants were reared under \"common-garden\" conditions. Brood-rearing behaviour was compared for 38 colonies of M. rubra drawn from 13 populations representing a range of 6 latitudes: all 6 were represented in eastern Europe and 2 in western Europe. A sample of ants from each colony was used to estimate respiration rate, body mass and fat content at the start of the experiment in spring (immediately post hibernation) and at the end of the experiment (mid summer). Respiration had a linear relationship with latitude, with northern populations having greater respiration rate in spring compared to southern populations. It is suggested that this is an adaptation to different seasonality over the species' range that results in the \"more active\" northern workers rearing fewer brood to maturity more quickly than southern workers. Fat content, a measure of worker \"quality\", had a parabolic relationship with latitude with mid latitude colonies having the fattest workers. Fatter workers appeared to rear heavier brood. This probably represented a functional response to environment with populations living at \"edge of range\" sites being physiologically more stressed and performing brood-rearing tasks less well than centre of range populations. We believe that this is the first demonstration of a consistent, intra-specific trend for Variation in the social physiology of an ant species over its geographic range., Graham W. Elmes, Judith C. Wardlaw, Mogens G. Nielsen, Vladilen E. Kipyatko, Elena B. Lopatina, Alexander G. Radchenko, Boyd Barr, and Lit
There is much current discussion about the factors that control the distribution and abundance of animal species, particularly at the edges of their range. The significance of temperature for survival and development is compared in two closely related psyllid species (Craspedolepta nebulosa and C. subpunctata) living on the same host plant (Chamerion angustifolium) (Onagraceae) but displaying different distributions along latitudinal and altitudinal gradients. The following measurements were made at critical periods during the life cycle (a) winter supercooling points (SCPs), (b) tolerance of short (1 min) and long term (1-25) days exposure to sub-zero temperatures above the SCP, (c) tolerance of short term exposure to high spring/summer temperatures and (d) comparative field development rates among species and sites during the early critical part of the growing season. Successful completion of the life cycle is related to heat availability during the growing season. This appears to limit the distribution of the Craspedolepta species, rather than their survival response to thermal extremes. No significant differences were found between the two species in the supercooling point or in their long and short term survival responses at low or high temperatures., Jeremy M. Bird, Ian D. Hodkinson, and Lit