We investigated the photosynthesis and leaf development of cherry tomato seedlings grown under five different combinations of red and blue light provided by light-emitting diodes (LEDs). Fresh biomass increased significantly under treatments with blue light percentages of 50, 60, and 75%, with 50% blue-light-grown seedlings accumulating significantly more dry mass. The 25% blue-light-grown seedlings were obviously weaker than those from the other LED treatments. An increase in net photosynthetic rate upon blue light exposure (25-60%) was associated with increases in leaf mass per unit leaf area, leaf area, leaf density, stomatal number, chloroplast and mesophyll cell development, and chlorophyll contents. Our results imply that photosynthesis and leaf development in cherry tomato seedlings are associated with both the proportion and quantity of blue light., X. Y. Liu, X. L. Jiao, T. T. Chang, S. R. Guo, Z. G. Xu., and Obsahuje bibliografii
In Ochroma pyramidale (Cav. ex Lam.) Urb., photon-saturated photosynthetic capacity (PNmax) was 13 μmol(CO2) m-2 s-1. Average stomatal conductance (gs) and water-use efficiency (WUE) were greater at high irradiance, about 260 mmol(H2O) m-2 s-1 and 2.15 g(C) kg-1(H2O), respectively. In the dark, gs values were about 30% of maximum gs. Leaf nutrient contents on a leaf area basis were 131, 15, 36, 21, and 12 mmol m-2 for N, P, K, Ca, and Mg, respectively. Ochroma also accumulated a greater amount of soluble saccharides than starch, 128 versus 90 g kg-1 (DM). The availability of N and Mg, but not P, Ca, or K, may limit photosynthetic rates of Ochroma in this site. and R. A. Marenco, J. F. de C. Gonçalves, G. Vieira.
We studied the effects of applying 50 kg(N) ha-1 year-1 of nitrogen (N) on needle photosynthesis, N allocation and nutrient content in the sun- and shade crowns of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi). The light-saturated net photosynthetic rate (PNmax) was not significantly affected by N application or crown position, although the contents of N, P, K, and chlorophyll (Chl), and the maximum rates of carboxylation and electron transport were lower in needles of the shade crown than of the sun crown. This difference was mainly due to an increase in the intercellular CO2 concentration (Ci) in the needles of the shade crown. Analysis of N allocation in photosynthetic systems revealed that more N was allocated to functions related to electron transport and ribulose-1,5-bisphosphate (RuBP) regeneration in needles of the shade crown. N allocation in needles of the hybrid larch F1 was regulated mainly by the light conditions, rather than by N application., Q. Z. Mao ... [et al.]., and Obsahuje bibliografii
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m-2 s-1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (PN) for the both studied plant species was inhibited at 8 °C. PN of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to PN. Measurements of ΦPS2/ΦCO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2/ΦCO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance. and J. Kościelniak, J. Biesaga-Kościelniak.
We investigated the physiological effect of night chilling (CN) on potted seedlings of two tropical tree species, Calophyllum polyanthum and Linociera insignis, in Xishuangbanna, southwest China. Seedlings grown under 8, 25, and 50 % daylight for five months were moved to a 4-6 °C cold storage house for three consecutive nights, and returned to the original shaded sites during the day. CN resulted in strong suppression of photosynthesis and stomatal conductance for L. insignis, and reduced photorespiration rates, carboxylation efficiency, and maximum photochemical efficiency of photosystem 2 (PS2) at dawn and midday for both species. CN increased dawn and midday rates of non-photochemical quenching, and the contents of malondialdehyde and H2O2 for both species. CN also induced inactivation or destruction of PS2 reaction centres. The impacts of CN on tropical seedlings increased with the number of CN. Shading could significantly mitigate the adverse effects of CN for both species. After 3-d-recovery, gas exchange and fluorescence parameters for both species returned to pre-treatment levels in most cases. Thus CN induced mainly stomatal limitation of photosynthesis for L. insignis, and non-stomatal limitation for C. polyanthum. C. polyanthum was more susceptible to CN than L. insignis. Fog, which often occurs in Xishuangbanna, could be beneficial to chilling sensitive tropical seedlings in this area through alleviating photoinhibition or photodamage by reducing sunlight. and Y.-L. Feng, K.-F. Cao.
The purpose of this study was to clarify effects of anthocyanins on photosynthesis and photoinhibition in green and red leaves of Oxalis triangularis. Gas analysis indicated that green plants had the highest apparent quantum yield for CO2 assimilation [0.051 vs. 0.031 μmol(CO2) μmol-1(photon)] and the highest maximum photosynthesis [10.07 vs. 7.24 μmol(CO2) m-2 s-1], while fluorescence measurements indicated that red plants had the highest PSII quantum yield [0.200 vs. 0.143 μmol(e-) μmol-1(photon)] and ETRmax [66.27 vs. 44.34 μmol(e-) m-2 s-1]. Red plants had high contents of anthocyanins [20.11 mg g-1(DM)], while green plants had low and undetectable levels of anthocyanin. Red plants also had statistically significantly (0.05>p>0.01) lower contents of xanthophyll cycle components [0.63 vs. 0.76 mg g-1(DM)] and higher activities of the reactive oxygen scavenging enzyme ascorbate peroxidase [41.2 vs. 10.0 nkat g-1(DM)]. Anthocyanins act as a sunscreen, protecting the chloroplasts from high light intensities. This shading effect causes a lower photosynthetic CO2 assimilation in red plants compared to green plants, but a higher quantum efficiency of photosystem II (PSII). Anthocyanins contribute to photoprotection, compensating for lower xanthophyll content in red plants, and red plants are less photoinhibited than green plants, as illustrated by the Fv/Fm ratio. and S. L. Nielsen, A.-M. Simonsen
Seasonal changes in water relations, net photosynthetic rate (PN), and fluorescence of chlorophyll (Chl) a of two perennial C3 deciduous shrubs, Ipomoea carnea and Jatropha gossypifolia, growing in a thorn scrub in Venezuela were studied in order to establish the possible occurrence of photoinhibition during dry season and determine whether changes in photochemical activity of photosystem 2 (PS2) may explain variations of PN in these species. Leaf water potential (ψ) decreased from -0.2 to -2.1 MPa during drought in both species. The PN decreased with ψ in I. carnea and J. gossypifolia by 64 and 74 %, respectively. Carboxylation efficiency (CE) decreased by more than 50 and 70 % in I. carnea and J. gossypifolia, respectively. In I. carnea, relative stomatal limitation (Ls) increased by 17 % and mesophyll limitation (Lm) by 65 % during drought, while in J. gossypifolia Ls decreased by 27 % and Lm increased by 51 %. Drought caused a reduction in quantum yield of PS2 (ϕPS2) in both species. Drought affected the capacity of energy dissipation of leaves, judging from the changes in the photochemical (qP) and non-photochemical quenching (NPQ) coefficients. Photoinhibition during drought in I. carnea and J. gossypifolia was evidenced in the field by a drop in the maximum quantum yield of PS2 (Fv/Fm) below 0.8 and also by non-coordinated changes in ϕPS2 and quantum yield of non-photochemical excitation quenching (Yn). Total soluble protein content on an area basis increased with ψ but the ribulose-1,5-bisphosphate carboxylase/oxygenase content remained unchanged. A reduction of total Chl content with drought was observed. Hence in the species studied photoinhibition occurred, which imposed an important limitation on carbon assimilation during drought. and W. Tezara ... [et al.].
Anastatica hierochuntica is an annual desert plant, which was recently shown to have unusually low nonphotochemical quenching (NPQ) and a high PSII electron transport rate (ETR). In the current study, we examined how these unusual characteristics are related to a lack of CO2 and inhibition of net photosynthetic rate (P N). We compared the photosynthetic and photoprotective response of A. hierochuntica and sunflower (Helianthus annuus), under conditions of photosynthetic inhibition, with either low CO2 or drought. We found that under nonsteady state conditions of low CO2 availability, A. hierochuntica exhibited about half of the NPQ values and almost twice of the ETR values of H. annuus. However, the long-term inhibition of P N under drought caused a similar increase in NPQ and a decrease in ETR in both A. hierochuntica and H. annuus. These results suggest that the unusually low NPQ and high ETR in A. hierochuntica are not directly related to a response to drought conditions., A. Eppel, S. Rachmilevitch., and Obsahuje seznam literatury
The effects of salinity (0-400 mM NaCl, marked S0, S100, S200, and S400) on growth, photosynthesis, photosystem 2 (PS2) efficiency, ion relations, and pigment contents were studied in two seashore Cakile maritima ecotypes (Tabarka and Jerba, respectively, sampled from humid and arid bioclimatic areas). Growth of Jerba plants was improved at S100 as compared to S0. Tabarka growth was inhibited by salinity at all NaCl concentrations. Leaf sodium and chloride concentrations increased with medium salinity and were higher in Jerba than in Tabarka plants. Chlorophyll content, net photosynthetic rate, stomatal conductance (gs), and intracellular CO2 concentration were stimulated at moderate salinity (S100) in Jerba plants and inhibited at higher salt concentrations in both ecotypes: gs was the most reduced parameter. The maximum quantum efficiency of PS2 (Fv/Fm), quantum yield, linear electron transport rate, and efficiency of excitation energy capture by open PS2 reaction centres showed no significant changes with increasing salt concentration in Jerba plant and were decreased in Tabarka subjected to S400. However, the efficiency of dissipation of excess photon energy in the PS2 antenna was maintained in Jerba and was increased in Tabarka plants challenged with S400. Hence the relative salt tolerance of Jerba was associated with a better ability to use Na+ and Cl- for osmotic adjustment, the absence of pigment degradation, and the concomitant PS2 protection from photodamage. and W. Megdiche ... [et al.].
Nicosulfuron is a post-emergence herbicide used for weed control in fields of maize (Zea mays L.). We used a pair of nearly isogenic inbred lines, SN509-R (nicosulfuron-resistant) and SN509-S (nicosulfuron-sensitive), to study the effect of nicosulfuron on waxy maize seedling. After the nicosulfuron treatment, net photosynthetic rate, stomatal conductance, transpiration rate, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the actual photochemical efficiency of PSII were significantly lower in SN509-S than those of SN509-R, contrary to intercellular CO2 concentration, stomatal limitation, and nonphotochemical quenching. Compared to SN509-R, antioxidant enzyme activities in SN509-S decreased significantly in response to the nicosulfuron treatment, while SN509-S exhibited an increased malondialdehyde content, which was associated with lower antioxidant enzyme activities. These results collectively suggest that the nicosulfuron-resistance mechanism was associated with photosynthetic rate, reactive oxygen species metabolism, and protective mechanisms., J. Wang, X. M. Zhong, X. L. Lv, Z. S. Shi, F. H. Li., and Obsahuje bibliografii