The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (PN), mesophyll conductance (g m), and stomatal conductance (gs) decreased. PN was more dominantly restricted by gm than gs. The values of PN, gm, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high PN and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input. and E. Kumagai, T. Araki, F. Kubota.
Leaf water potential, leaf osmotic potential, chlorophyll a and b contents, stomatal conductance, net photosynthetic rate, and water use efficiency were determined in two pistachio species (Pistacia khinjuk L. and P. mutica L.) grown under osmotic drought stress induced by a combination of NaCl and polyethylene glycol 6000. A decrease in values for all mentioned variables was observed as the osmotic potential of the nutrient solution (Ψs) decreased. The osmotic adjustment (ΔΨπ) of the species increased by decreasing Ψs. Thus P. khinjuk had a higher osmotic drought stress tolerance than P. mutica. and A. Ranjbarfordoei ... [et al.].
Abscisic acid (ABA), an important chemical signal from roots, causes physiological changes in leaves, including stomata closure and photoprotection. Furthermore, endogenous ABA concentration in leaves and stomatal behavior vary with the species adapted to different water regimes. In this study, Ficus microcarpa, a hemiepiphyte, Salix warburgii, a hygrophyte, and Acacia confusa, a mesophyte, were used to elucidate the effects of leaf detachment on photosystem II (PSII) efficiency under osmotic- and high-light stresses. Results indicate that, under osmotic- and high-light stresses, PSII efficiency of the detached leaves was lower than that of the attached leaves for all three tree species, when compared at the same levels of stomatal resistance and leaf water potential. Exogenous ABA could mitigate the PSII efficiency decrease of detached F. microcarpa leaves under osmotic- and high-light stresses. Yet, the osmotic stress could raise endogenous ABA concentration in the attached, but not in the detached F. microcarpa leaves. In addition, partial root-zone drying exerted a significant effect on stomatal behavior but not on the water status of F. microcarpa leaves. These observations imply that the stronger ability of PSII in the attached leaves of F. microcarpa under osmoticand high-light stresses was probably due to the protective action of ABA from roots. On the contrary, endogenous ABA level of S. warburgii leaves was very low. In addition, partial root-zone drying produced no significant effect on its stomatal behavior. Therefore, PSII in attached S. warburgii leaves was possibly protected from the damaging effects of excess absorbed energy by signals other than ABA, which were transported from the roots. and J.-H. Weng ... [et al.].
Little is known about the response of trees to elevated ozone (O3) in the subtropical region of China, where ambient O3 concentrations are high enough to damage plants. In this study, pigment content, gas exchange and chlorophyll (Chl) a fluorescence in leaves of Liriodendron chinense (Hemsl.) Sarg seedlings, a deciduous broadleaf tree species native in subtropical regions, were investigated at 15, 40, and 58 days after O3 fumigation (DAF) at a concentration of 150 mm3 m-3 (E-O3). At the end of experiment, seedlings were harvested for biomass measurement. E-O3 caused visible injuries on the mature leaves e.g. necrotic patches and accelerated early defoliation. Relative to the charcoal-filtered air (CF) treatment, E-O3 significantly decreased shoot and root biomass, pigment content, light-saturated net photosynthesis (P Nsat), stomatal conductance (gs), maximum rate of carboxylation (Vcmax), photochemical quenching coefficient (qp) and effective quantum yield of PSII photochemistry (ΦPSII), and also caused a slight reduction in relative increase of basal diameter. Therefore, L. chinense can be assumed to be an O3-sensitive tree species, which will be threatened by increasing ambient O3 concentrations in China. and W. W. Zhang ... [et al.].
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg-1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (PN) and stomatal conductance (gs) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. PN decreased significantly in ozonated plants, in the three species. The greatest decrease in PN was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in PN was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. and A. Plażek, M. Rapacz. A. Skoczowski.
Salt stress is one of the most critical factors hindering the growth and development of plants. Paclobutrazol (PBZ) is widely used to minimize this problem in agriculture because it can induce salt stress tolerance in plants. This study investigated the effects of PBZ on salt tolerance of seedlings from two Chinese bayberry cultivars (i.e., Wangdao and Shenhong). Plants were treated with three salt concentrations (0, 0.2, and 0.4 % NaCl) and two PBZ concentrations (0 and 2.0 μmol L-1). Application of PBZ increased a relative water content, proline content, chlorophyll (a+b) content, and antioxidant enzyme activities in both cultivars, resulting in a better acclimation to salt stress and an increase in dry matter production. We concluded that PBZ ameliorated the negative effects of salt stress in Chinese bayberry seedlings., Y. Hu, W. Yu, T. Liu, M. Shafi, L. Song, X. Du, X. Huang, Y. Yue, J. Wu., and Obsahuje bibliografii
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280-315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m-2 d-1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m-2 d-1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (Ci) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (PN) and maximum photosynthetic rate (Pmax) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (F0), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites. and Q. Li ... [et al.].
In leaves of field-grown grapevine, the contents of chlorophyll, carotenoids, and soluble proteins and the activities of ribulose-1,5-bisphosphate carboxylase (RuBPC) and nitrate (NR) and nitrite (NiR) reductases were decreased in phytoplasma-infected leaves, but the contents of soluble sugars and total saccharides were markedly increased. In isolated thylakoids, phytoplasma caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. and M. Bertamini, N. Nedunchezhian.
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements. and M. Bertamini ... [et al.].
The effects of postharvest pretreatments on vase life, keeping quality and carbohydrate concentrations in cut sweet pea (Lathyrus odoratus L.) flowers were investigated. Compared to the control, all treatments promoted floret quality and extended longevity. The cut flowers held in the solution containing sucrose + 8-hydroxyquinoline (Suc+HQS) was more effective in promoting absorption rate, achieved greater maximum fresh mass, had better water balance for a longer period, extended the vase life (up to 17 d), and delayed degradation of chlorophylls. The same treatment also enhanced the concentration of soluble carbohydrates in the petals and stems and leaf chlorophyll (Chl) content, whereas it was lowest in silver thiosulphate (STS) treatment. However, concentrations of anthocyanin in the petals were higher for treatment with sucrose or STS plus sucrose than in control or STS alone treatments. Our results suggest that pulse treatment with HQS plus sucrose for 12 h is the most effective for improving pigmentation and use as a commercial cut flower preservative solution to delay flower senescence, enhance quality, and prolong the vase life of sweet pea. The results also showed that soluble carbohydrate concentration in petals and stems is an important factor in determining the vase life of sweet pea flowers., K. M. Elhindi., and Obsahuje bibliografii