The response of stomatal parameters of four rice cultivars to atmospheric elevated CO2 concentration (EC) was studied using open top chambers. EC brought about reduction in stomatal conductance and increase in stomatal index, size of stomatal guard cells, stroma, and epidermal cells. Such acclimation helped the regulation of photosynthesis to EC. These changes in stomatal characters made rice cultivars adjustable to EC environment. and D. C. Uprety ... [et al.].
Gas exchange and chlorophyll (Chl) fluorescence were measured on young mature leaves of rose plants (Rosa hybrida cvs. First Red and Twingo) grown in two near-to-tight greenhouses, one under control ambient CO2 concentration, AC (355 µmol mol-1) and one under CO2 enrichment, EC (700 µmol mol-1), during four flushes from late June to early November. Supply of water and mineral elements was non-limiting while temperature was allowed to rise freely during daytime. Leaf diffusive conductance was not significantly reduced at EC but net photosynthetic rate increased by more than 100 %. Although the concentration of total non-structural saccharides was substantially higher in the leaves from the greenhouse with EC, ΦPS2 (quantum efficiency of radiation use) around noon was not significantly reduced at EC indicating that there was no down-regulation of electron transport. Moreover, CO2 enrichment did not cause any increase in the risk of photo-damage, as estimated by the 1 - qP parameter. Non-photochemical quenching was even higher in the greenhouse with EC during the two summer flushes, when temperature and photosynthetic photon flux density (PPFD) were the highest. Hence rose photosynthesis benefits strongly from high concentrations of atmospheric CO2 at both high and moderate temperatures and PPFD. and L. Urban ... [et al.].
We examined the effect of ethanol on single potassium channels derived from plasma membranes of bovine tracheal smooth muscles. The observed potassium channels had a conductance of 296±31 pS (mean ± S.D.) in symmetrical 250 mmol/l KCl solutions, and exhibited a voltage- and Ca2+-dependence similar to BKCa channels. Ethanol at 50, 100 and 200 mM concentrations increased the probability of open potassium channels to 112±5, 127±7 and 121±13% (mean ± S.E.M.), respectively. It is suggested that increased activity of the BKCa channels by ethanol hyperpolarizes the plasma membrane and thus may contribute to relaxation of tracheal smooth muscle., V. Komínková, M. Magová, A. Mojžišová, Ľ. Máleková, K. Ondriaš., and Obsahuje bibliografii
The cornerstone of cardiovascular risk management is lifestyle intervention including exercise which could exert favorable impact also in renal transplant recipients. Nevertheless, reliable assessment of the effect of lifestyle interventions is complicated and the available data in this population are not consistent. The aim of the study was to evaluate the effect of physical activity on selected laboratory markers of vascular health including circulating stem cells, endothelial progenitor cells, microparticles, and plasma asymmetric dimethyl arginine in renal transplant recipients. Nineteen men and 7 women were recruited in 6-month program of standardized and supervised exercise. Control group consisted of 23 men and 13 women of similar age and body mass i ndex not included into the program. One year after the transplantation, the main difference between intervention and control group was found in the change of endothelial progenitor cells (p=0.006). Surprisingly, more favorable change was seen in the contro l group in which endothelial progenitor cells significantly increased compared to the intervention group. The explanation of this finding might be a chronic activation of reparative mechanisms of vascular system in the population exposed to multiple risk factors which is expressed as relatively increased number of endothelial progenitor cells. Therefore, their decrease induced by exercise might reflect stabilization of these processes., J. Piťha, I. Králová Lesná, P. Stávek, A. Mahrová, J. Racek, A. Sekerková, V. Teplan, M. Štollová., and Obsahuje bibliografii
Interleukin-8 plays a critical role in inflammatory processes. Hence generation of molecules with anti-IL-8 activity is likely to be important for successful feeding and for survival of the ticks. Anti-IL-8 activity was studied in saliva of three ixodid tick species - Dermacentor reticulatus (Fabricius, 1794), Rhipicephalus appendiculatus Neumann, 1901, and Amblyomma variegatum (Fabricius, 1794). The greatest activity was shown in saliva prepared from D. reticulatus. The activity was attributed to tick salivary gland molecules that bind to IL-8, preventing binding of the chemokine to its specific receptor, rather than to occupation of the IL-8 cell receptor by the tick molecules. The distribution of anti-IL-8 activity in fast protein liquid chromatography (FPLC) fractions of salivary gland extracts (SGE) derived from adult female D. reticulatus, R. appendiculatus and A. variegatum was compared directly by both ELISA and receptor-binding inhibition assays. The correspondence in results with fractions of SGE from ELISA is consistent with detection of tick molecules that inhibit IL-8 binding to its receptor. As IL-8 is an important chemoattractant and activator of neutrophils, the presence of an anti-IL-8 activity in tick saliva indicates that neutrophils play an important role in the host response to parasitism by ticks.
a1_In the present work the effects of fasting and refeeding on fat pad weight and alkaline phosphatase activity in the brush border of individual duodenal enterocytes have been evaluated in male Wistar rats with obesity induced by monosodium glutamate (MSG) treatment during the early postnatal period. Neonatal rats were treated subcutaneously with MSG (2 mg/g b.w.) or saline (controls) for 4 days after birth. At 4 months of age, two types of experiments were performed. In the first experiment rats, were submitted to 3 or 6 days lasting food deprivation. In the second experiment the rats were refed for 3 or 6 days ad libitum or restrictedly (60 % of pre-fasting intake) after a 6 day-fasting period. Fasting and refeeding influenced the body fat and function of the duodenum in MSG-treated rats differently as compared to the controls. However, alkaline phosphatase activity and the weight of epididymal and retroperitoneal fat depots were significantly increased in MSG obese rats (P<0.001) during all the periods examined. While 3 days of food deprivation resulted in both groups in a similar loss of adipose tissue weight and alkaline phosphatase activity, the decrements of these parameters after 6 days of fasting were lower in obese rats suggesting that their capacity to spare body fat stores was enhanced. After 3 days of ad libitum refeeding, a more marked adaptational increase of food consumption and also a significantly increased alkaline phosphatase activity above the pre-fasting level (P<0.01) was observed in the MSG-treated rats. Consequently, a more rapid body fat restoration was demonstrated in these animals. Refeeding of rats at 60 % of the pre-fasting intake level resulted in a significant increase of alkaline phosphatase activity in both the MSG and control group; moreover, as food restriction continued, MSG-treated rats tended to further increase the enzyme activity., a2_Our results revealed that MSG treatment of neonatal rats may significantly change the intestinal functions. Permanently increased alkaline phosphatase activity observed in MSG obese rats during all investigated periods suggests that this functional alteration is probably not a consequence of actual nutritional variation but could be a component of regulatory mechanisms maintaining their obesity at critical values., Ľ. Raček, Ľ. Lenhardt, Š. Mozeš., and Obsahuje bibliografii
The use of Jatropha curcas oil as a source of biofuel has been well-explored. However, the physiological and growth studies of J. curcas have received considerably lesser attention. In this study, leaf gas exchange measurements and leaf nitrogen content were determined for four varieties of J. curcas, grown in the field or in pots. Based on stable carbon isotope analysis (δ13C) and
gas-exchange studies, J. curcas is a C3 sun plant and the range of leaf photosynthetic rates (or CO2 assimilation rates, PNmax) were typically between 7 and 25 μmol(CO2) m-2 s-1 and light saturation generally occurred beyond 800 μmol(quanta) m-2 s-1. Higher rates of leaf photosynthesis were generally obtained with the mature leaves. In addition, increased foliar PNmax were recorded in potted J. curcas variety Indiana with increasing nitrogen (N) nutrition levels. These plants also showed greater growth, increased leaf N content, higher maximum CO2 assimilation capacity (PNhighCO2) and chlorophyll (Chl) content, indicating the potential of optimizing the growth of Jatropha by varying fertilizer nutrient levels. A rapid assessment for leaf N using a nondestructive and portable Chl meter had been established for J. curcas. This approach will allow repeated sampling of the same plant over time and thus enable the monitoring of the appropriate levels of soil fertility to achieve good Jatropha plantation productivity. High N nutrition improved the overall plant oil yield by increasing the total number of fruits/seeds produced per plant, while not affecting the intrinsic seed oil content. and J. W. H. Yong ... [et al.].
Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sexdependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming., D. Muñon-Valverde, P. Rodríguez-Rodríguez, P. Y. Gutierrez-Arzapalo, A. L. López de Pablo, M. Carmen González, R. López-Giménez, B. Somoza, S. M. Arribas., and Obsahuje bibliografii
The present study was conducted to determine the effect of exogenous application of brassinolide (BR) on Leymus chinensis grown under shade, i.e., control (100% natural light), mild shade (70% natural light), and moderate shade (50% natural light). Shade substantially enhanced the plant growth, synthesis of photosynthetic pigments, photosynthetic efficiency, and chlorophyll (Chl) fluorescence attributes of L. chinensis as compared with control. The order of increase was mild shade > moderate shade > natural light except Chl content, where the order of increase was moderate shade > mild shade > natural light. Likewise, application of BR resulted in further exacerbation of plant height, plant fresh and dry mass, but less in case of Chl and carotenoids contents, gas-exchange characteristics, and Chl fluorescence attributes. The results conclude that shade significantly enhanced plant growth through alterations in physiological attributes of L. chinensis, while, application of BR may not further improve the plant growth under shade., A. J. Yang, S. A. Anjum, L. Wang, J. X. Song, X. F. Zong, J. Lv, A. Zohaib, I. Ali, R. Yan, Y. Zhang, Y. F. Dong, S. G. Wang., and Obsahuje bibliografii
On the first day after foliar application, chitosan pentamer (CH5) and chitin pentamer (CHIT5) decreased net photosynthetic rate (PN) of soybean and maize, however, on subsequent days there was an increase in PN in some treatments. CH5 caused an increase in maize PN on day 3 at 10-5 and 10-7 M; the increases were 18 and 10 % over the control plants. This increase was correlated with increases in stomatal conductance (gs) and transpiration rate (E), while the intercellular CO2 concentration (Ci) was not different from the control plants. PN of soybean plants did not differ from the control plants except for treatment CH5 (10-7 M) which caused an 8 % increase on day 2, along with increased gs, E, and Ci. On days 5 and 6 the CHIT5 treatment caused a 6-8 % increase in PN of maize, which was accompanied by increases in gs, E, and Ci. However, there was no such increase for soybean plants treated with CHIT5. In general, foliar application of high molecular mass chitin (CHH) resulted in decreased PN, particularly for 0.010 % treated plants, both in maize and soybean. Foliar applications of chitosan and chitin oligomers did not affect (p > 0.05) maize or soybean height, root length, leaf area, shoot or root or total dry mass. and W. M. Khan, B. Prithiviraj, D. L. Smith.