This paper explores the impacts of reconfiguration and leaf morphology on the flow downstream of a flexible foliated plant. 3D acoustic Doppler velocimetry and particle image velocimetry were used to experimentally investigate the hydrodynamic interaction between a foliated plant and the flow, testing two plants with different leaves morphology under different bulk flow velocities. The model vegetation was representative of riparian vegetation species in terms of plants hydrodynamic behavior and leaf to stem area ratio. To explore the effects of the seasonal variability of vegetation on the flow structure, leafless conditions were tested. Reconfiguration resulted in a decrease of the frontal projected area of the plants up to the 80% relative to the undeformed value. Such changes in plant frontal area markedly affected the spatial distributions of mean velocity and turbulence intensities, altering the local exchanges of momentum. At increasing reconfiguration, the different plant morphology influenced the mean and turbulent wake width. The leafless stem exhibited a rigid behavior, with the flow in the wake being comparable to that downstream of a rigid cylinder. The study revealed that the flexibility-induced reconfiguration of plants can markedly affect the local distribution of flow properties in the wake, potentially affecting transport processes at the scale of the plant and its subparts.
Abandonment of agricultural lands in recent decades is occurring mainly in Europe, North America and Oceania, and changing the fate of landscapes as the ecosystem recovers during fallow stage. The objective of this study was to find the impact of secondary succession in abandoned fields on some parameters of acidic sandy soils in the Borská nížina lowland (southwestern Slovakia). We investigated soil chemical (pH and soil organic carbon content), hydrophysical (water sorptivity, and hydraulic conductivity), and water repellency (water drop penetration time, water repellency cessation time, repellency index, and modified repellency index) parameters, as well as the ethanol sorptivity of the studied soils. Both the hydrophysical and chemical parameters decreased significantly during abandonment of the three investigated agricultural fields. On the other hand, the water repellency parameters increased significantly, but the ethanol sorptivity did not change during abandonment. As the ethanol sorptivity depends mainly on soil pore size, the last finding could mean that the pore size of acidic sandy soils did not change during succession.
This paper investigates the incipient motion of sediment particles under non-uniform flow in river and laboratory. In rivers, the non-uniform flow is often observed due to the presence of various bed forms. Threshold condition has been examined by using the Shields diagram based on the uniform flow assumption, however, this approach can be led to fallacious results for non-uniform flows where the effect of pressure gradient is significant due to bed forms. This study investigates the chronological order of incipient motion of the particles, the average threshold velocity (Ucr), and Shields parameter for non-uniform flows. River data collection with gravel is used for investigating the incipient motion of surface layer of river bed and the laboratory data collection is considered studying the incipient motion of sub-surface layer of river. Both river and laboratory data collections are conducted in the presence of bed forms. Results reveal that the Shields diagram underestimates the particle incipient motion under accelerating and decelerating flows for the both case of laboratory and river. In both weak and general motion in the laboratory, the values of the critical Shields parameter are located below the Shields diagram, showing no particle motion. Our analysis shows that the incipient motion in river is affected by the presence of bed forms, river width changes, and flow non-uniformity conditions. The results show that in the accelerating flow (the bed form exit with a negative slope), the incipient motion is greater than the decelerating flow (the bed form entrance with a positive slope).
Climate change and human activity are two linked factors that alter the spatiotemporal distribution of the available water. Assessing the relative contribution of the two factors on runoff changes can help the planners and managers to better formulate strategies and policies regarding regional water resources. In this work, using two typical sub-basins of the Yellow River as the study area, we first detected the trend and the breakpoint in the annual streamflow data with the Pettitt test during the period 1964–2011. Next, a Budyko-based climate elasticity model and a monthly hydrological model were employed as an integrated method to distinguish the relative contributions of climate change and human activities to the long-term changes in runoff. The results showed that a significant decline in the annual runoff occurred in the two sub-basins during the study period, and the abrupt change point in the annual runoff at the two subbasins both occurred in 1997. The conceptual hydrological model performed well in reproducing monthly runoff time series at the two sub-basins. The Nash-Sutcliffe efficiency (NSE) between observed and simulated runoff during the validation period exceeds 0.83 for the two sub-basins. Climate elasticity method and hydrological model give consistent attribution results: human activities are the major drivers responsible for the decreased annual runoff in the Ten Great Gullies Basin. The relative contributions of climate change and human activities to the changes in the annual runoff were 22–32% and 68–78%, respectively.
editorky Stanislava Fedrová, Alice Jedličková., Obsahuje bibliografie a bibliografické odkazy, and Částečně polský a slovenský text, česká a anglická resumé
The study aimed to determine the linkage between soil exchangeable potassium (K+) concentration and stream water K+ concentration during rainfall and snowmelt events in small catchments with different land use (Carpathian Foothills, Poland). The complementary geochemical and hydrochemical approach used in the study produced new information on the role of particular soil horizons and contributing areas such as hillslope or riparian areas in K+ delivery to stream channels during events. Horizons lying above the nearly impermeable fragipan (Btx) play the most important role in the process of K+ influx to streams during most event types except snowmelts with frozen soils, in all the studied catchments. In the woodland catchment, rapid flushing of K+ from the topsoil Ah horizon with higher hydraulic conductivity (Ksat) and higher exchangeable K+ concentrations than in the lying lower E horizon resulted in a clockwise hysteresis of K+ in stream water during most events. In agricultural catchments, changes in stream water K+ concentration during events were determined by distinct differences between soil exchangeable K+ concentrations on hillslopes and in riparian areas.
Rock dwelling organisms (lithobionts) such as cyanobacteria (prokaryotes) and chlorolichens (eukaryotes) abound in the Negev Desert, where they cover almost all calcareous bedrocks and rock particles (cobbles, boulders). In a small limestone watershed in the Negev Highlands, cyanobacteria inhabit the south-facing (SF) bedrocks, epilithic lichens (accompanied by endolithic lichens) inhabit the north-facing (NF) bedrocks, while endolithic lichens cover most of the cobbles and boulders in both aspects. In order to study their contribution to runoff water, a pair of runoff plots was established on habitats with cyanobacteria, endolithic lichens, and epilithic lichens. Rain and runoff were collected during the hydrological year 2006/07, and the chemical composition (Ca, Mg, Na, K, Cl, SO4, HCO3, Si) of the rain and runoff water was analyzed. Several patterns were observed: (a) as indicated by Si, more dust accumulated on the bedrocks; (b) all substrates exhibited high amounts of Ca, and HCO3; (c) while SF-bedrocks showed enrichment in K, both bedrocks (and especially the NF bedrocks), as well as the NF boulders showed an enrichment in Mg. While the enrichment in Ca and HCO3 can be explained by the contribution of the limestone parent material, the enrichment in K and Mg can be explained by the contribution of the living lithobionts, with K being mainly contributed by the cyanobacteria and Mg mainly by the epilithic lichens. Ion enrichment may therefore be aspect-dependent, reflecting the lithobiont distribution within the drainage basin, partially explaining the enrichment in K and Mg previously recorded in runoff water from the Negev.
Longer term monitoring of soil water content at a catchment scale is a key to understanding its dynamics, which can assist stakeholders in decision making processes, such as land use change or irrigation programs. Soil water monitoring in agriculturally dominated catchments can help in developing soil water retention measurements, for assessment of land use change, or adaptation of specific land management systems to climate change. The present study was carried out in the Pannonian region (Upper-Balaton, Hungary) on Cambisols and Calcisols between 2015 and 2021. Soil water content (SWC) dynamics were investigated under different land use types (vineyard, grassland, and forest) at three depths (15, 40, and 70 cm). The meteorological data show a continuous decrease in cumulative precipitation over time during the study with an average of 26% decrease observed between 2016 and 2020, while average air temperatures were similar for all the studied years. Corresponding to the lower precipitation amounts, a clear decrease in the average SWC was observed at all the land use sites, with 13.4%, 37.7%, and 29.3% lower average SWC for the grassland, forest, and vineyard sites, respectively, from 2016 to 2020 (measured at the 15 cm depth of the soil). Significant differences in SWC were observed between the annual and seasonal numbers within a given land use (p < 0.05). The lowest average SWC was observed at the grassland (11.7%) and the highest at the vineyard (28.3%). The data showed an increasing average soil temperature, with an average 6.3% higher value in 2020 compared to 2016. The grassland showed the highest (11.3 °C) and the forest soil the lowest (9.7 °C) average soil temperatures during the monitoring period. The grassland had the highest number of days with the SWC below the wilting point, while the forest had the highest number of days with the SWC optimal for the plants.
Biocrust sustainability relies on dew and rain availability. A study of dew and rain resources in amplitude and frequency and their evolution is presented from year 2001 to 2020 in southern Africa (Namibia, Botswana, South Africa) where many biocrust sites have been identified. The evaluation of dew is made from a classical energy balance model using meteorological data collected in 18 stations, where are also collected rain data. One observes a strong correlation between the frequency of dew and rain and the corresponding amplitudes. There is a general tendency to see a decrease in dew yield and dew frequency with increasing distance from the oceans, located west, east and south, due to decreasing RH, with a relative minimum in the desert of Kalahari (Namibia). Rain amplitude and frequency decreases when going to west and north. Short-term dew/rain correlation shows that largest dew yields clearly occur during about three days after rainfall, particularly in the sites where humidity is less. The evolution in the period corresponds to a decrease of rain precipitations and frequency, chiefly after 2010, an effect which has been cyclic since now. The effect is more noticeable towards north. An increase of dew yield and frequency is observed, mainly in north and south-east. It results in an increase of the dew contribution with respect to rain, especially after 2010. As no drastic changes in the distribution of biomass of biocrusts have been reported in this period, it is likely that dew should compensate for the decrease in rain precipitation. Since the growth of biocrust is related to dew and rain amplitude and frequency, future evolution should be characterized by either the rain cycle or, due to global change, an acceleration of the present tendency, with more dew and less rainfalls.