Five-sixths nephrectomy is a widely used experimental model of chronic kidney disease (CKD) that is associated with severe mitochondrial dysfunction of the remnant tissue. In this study, we assessed the effect of CKD on mitochondrial respiration separately in the rat kidney cortex and medulla 10 weeks after induction of CKD by subtotal 5/6 nephrectomy (SNX). Mitochondrial oxygen consumption was evaluated on mechanically permeabilized samples of kidney cortex and medulla using high-resolution respirometry and expressed per mg of tissue wet weight or IU citrate synthase (CS) activity. Mitochondrial respiration in the renal cortex of SNX rats was significantly reduced in all measured respiratory states if expressed per unit wet weight and remained lower if recalculated per IU citrate synthase activity, i.e. per mitochondrial mass. In contrast, the profound decrease in the activity of CS in SNX medulla resulted in significantly elevated respiratory states expressing the OXPHOS capacity when Complexes I and II or II only are provided with electrons, LEAK respiration after oligomycin injection, and Complex IV-linked oxygen consumption per unit CS activity suggesting compensatory hypermetabolic state in remaining functional mitochondria that is not sufficient to fully compensate for respiratory deficit expressed per tissue mass. The results document that CKD induced by 5/6 nephrectomy in the rat is likely to cause not only mitochondrial respiratory dysfunction (in the kidney cortex), but also adaptive changes in the medulla that tend to at least partially compensate for mitochondria loss.
Rhipicephalus camicasi Morel, Mouchet et Rodhain, 1976 is thought to be distributed across Africa, Arabian Peninsula and the Mediterranean region. It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex. Mitochondrial genome sequences are becoming frequently used for the identification and differentiation of tick species. In the present study, the entire mitochondrial genome of R. cf. camicasi (~15 kb) collected from a camel in Saudi Arabia was sequenced and compared with mitogenomes of two species of Rhipicephalus Koch, 1844. The mitochondrial genome is 87.8% and 91.7% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and Rhipicephalus linnaei (Audouin, 1826) (former "tropical lineage"). The current study delivers a molecular reference for material that resembles R. camicasi. We propose to consider the current material, including the complete mitogenome, as the reference for R. camicasi, until a revision using topotypical material is available.
The objective of the present study was to evaluate platelet mitochondrial oxygen consumption using high-resolution respirometry (HRR) and metabolic flux analysis (MFA) and to verify the effect of advanced age on these parameters. HRR was used to analyze permeabilized and intact platelets, MFA to measure oxygen consumption rates (OCR), extracellular acidification rates (ECAR) and ATP production rate in intact fixed platelets. Two groups of healthy volunteers were included in the study: YOUNG (20-42 years, n=44) and older adults (OLD; 70-89 years; n=15). Compared to YOUNG donors, platelets from group OLD participants displayed significantly lower values of oxygen consumption in the Complex II-linked phosphorylating and uncoupled states and the Complex IV activity in HRR protocols for permeabilized cells and significantly lower resting and uncoupled respirations in intact cells when analyzed by both methods. In addition, mitochondrial ATP production rate was also significantly lower in platelets isolated from older adults. Variables measured by both methods from the same bloods correlated significantly, nevertheless those acquired by MFA were higher than those measured using HRR. In conclusion, the study verifies compromised mitochondrial respiration and oxidative ATP production in the platelets of aged persons and documents good compatibility of the two most widely used methods for determining the global performance of the electron-transporting system, i.e. HRR and MFA
Exercise training (ET) is well established to induce vascular adaptations on the metabolically active muscles. These adaptations include increased function of vascular potassium channels and enhanced endothelium-dependent relaxations. However, the available data on the effect of ET on vasculatures that normally constrict during exercise, such as mesenteric arteries (MA), are scarce and not conclusive. Therefore, this study hypothesized that 10 weeks of moderate-intensity ET would result in adaptations towards more vasoconstriction or/and less vasodilatation of MA. Young Fischer 344 rats were randomly assigned to a sedentary group (SED; n=24) or exercise training group (EXE; n=28). The EXE rats underwent a progressive treadmill ET program for 10 weeks. Isometric tensions of small (SED; 252.9±29.5 µm, EXE; 248.6±34.4 µm) and large (SED; 397.7±85.3 µm, EXE; 414.0±86.95 µm) MA were recorded in response to cumulative phenylephrine concentrations (PE; 0-30 µM) in the presence and absence of the BKCa channel blocker, Iberiotoxin (100 nM). In another set of experiments, tensions in response to cumulative concentration-response curves of acetylcholine (ACh) or sodium nitroprusside (SNP) were obtained, and pEC50s were compared. Immunoblotting was performed to measure protein expression levels of the BKCa channel subunits and eNOS. ET did not alter the basal tension of small and large MA but significantly increased their responses to PE, and reduced the effect of BKCa channels in opposing the contractile responses to PE without changes in the protein expression level of BKCa subunits. ET also elicited a sizedependent functional adaptations that involved reduced endothelium-independent and endothelium-dependent relaxations. In large MA the sensitivity to SNP was decreased more than in small MA suggesting impaired nitric oxide (NO)-dependent mechanisms within the vascular smooth muscle cells of ET group. Whereas the shift in pEC50 of ACh-induced relaxation of small MA would suggest more effect on the production of NO within the endothelium, which is not changed in large MA of ET group. However, the eNOS protein expression level was not significantly changed between the ET and SED groups. In conclusion, our results indicate an increase in contraction and reduced relaxation of MA after 10 weeks of ET, an adaptation that may help shunt blood flow to metabolically active tissues during acute exercise.
South African clinids are a major component of the temperate intertidal regions that are also known to participate in life cycles and transmission of several groups of parasites. However, the knowledge of trematode diversity of these fishes is incomplete. In this study, two species of Clinus Cuvier, the super klipfish Clinus superciliosus (Linnaeus) and the bluntnose klipfish Clinus cottoides Valenciennes, were collected from six localities along the South African coast and examined for the presence of trematodes. Metacercariae of Cardiocephaloides Sudarikov, 1959 were found in the eye vitreous humour and brain of C. superciliosus and in the eye vitreous humour of C. cottoides. Detailed analyses integrating morphological and molecular sequence data (28S rDNA, ITS2 rDNA-region, and COI mtDNA) revealed that these belong to two species, Cardiocephaloides physalis (Lutz, 1926) and an unknown species of Cardiocephaloides. This study provides the first report of clinid fishes serving as intermediate hosts for trematodes, reveals that the diversity of Cardiocephaloides in South Africa is higher than previously recorded, and highlights the need for further research to elucidate the life cycles of these trematode species. The broad geographical distribution of Cardiocephaloides spp. was confirmed in the present study based on molecular sequence data. The host-parasite interactions between clinid fishes and metacercariae of Cardiocephaloides are yet to be explored.
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
Entamoeba moshkovskii Tshalaia, 1941 is prevalent in developing countries and it is considered to be primarily a free-living amoeba, which is morphologically indistinguishable, but biochemically and genetically different from the human infecting, pathogenic Entamoeba histolytica Schaudinn, 1903. The pathogenic potential of this organism is still under discussion. Entamoeba moshkovskii in human stool samples has been reported in different countries such as the United States, Italy, Australia, Iran, Turkey, Bangladesh, India (Pondicherry), Indonesia, Colombia, Malaysia, Tunisia, Tanzania and Brazil, but no data are available about the occurrence of E. moshkovskii in farm animals. This study provides data on the occurrence of E. moshkovskii in pigs in a total of 294 fresh faecal samples collected from five different regions in Kolkata, West Bengal, India. Stool samples were tested by nested PCR using primers targeting SSU rDNA of E. moshkovskii. The amplified PCR products were further confirmed by RFLP technique. Purified nested PCR products were also sequenced and identified via BLAST program run on the NCBI website to confirm species along with their genetic characteristics of the E. moshkovskii isolates. Overall 5.4 % samples were identified as E. moshkovskii positive. Results of this study demonstrate that swine can host E. moshkovskii and should be considered as a potential natural reservoir for E. moshkovskii. However, the occurrence of E. moshkovskii infection in pigs was not statistically associated with their faecal consistency, sex and developmental stage.
A three-year-old male South China tiger died in the tiger enclosure of the China Tiger Park in the Meihua Mountains on December 2018 after being bitten by a tick. This tiger presented clinical symptoms like whole-body severe jaundice, hepatosplenomegaly, kidney, and lymph node hemorrhages. The Colpodella sp.-specific 18S rRNA gene was detected using nested PCR. Interestingly, the DNA isolated from the blood of the tiger was found to be 100% similar to that of the tick by NCBI BLAST analysis. However, the DNA fragments isolated from the tiger's blood were 90.1% similar to the Colpodella sp. strain human erythrocyte parasite (HEP, MH208621) and 90.4% similar to the Colpodella sp. strain Heilongjiang (HLJ, KT364261). To investigate the species of ticks and ticks-carried Colpodella parasites in this region, the species of ticks obtained from the grasses outside the tiger enclosure and the species of Colpodella carried by ticks were identified. The DNA from ticks as well as that from the tick-borne Colpodella sp. were amplified from each tick using PCR followed by amplicon sequencing. In total 402 adult ticks samples were collected, among which 22 were positive for Colpodella sp. (5.5%), and the species were further determined by morphology, DNA sequencing and phylogenetic analyses. Interestingly, one Colpodella sp. was found to have 94.2% sequence similarities to the Colpodella sp. strain HEP (MH208621). This strain was previously reported to infect a woman in Yunnan, China. In addition, three Colpodella sp. showed 87-91% sequence similarities to the Colpodella sp. strain HLJ (KT364261), which was previously reported to infect human in Heilongjiang, China. This study disclosed the possibility of zoonotic transmission of Colpodella sp. by ticks in China. Finally, it provides a basis for urgently determining and monitoring the repertoire of ticks-borne piroplasmid pathogens, with the ultimate aim of strategic control.
Vine tea, a Chinese herbal medicine, is widely used in traditional Asian medicine to treat common health problems. Dihydromyricetin (DMY) is the main functional flavonoid compound extracted from vine tea. In recent years, preclinical studies have focused on the potential beneficial effects of dihydromyricetin, including glucose metabolism regulation, lipid metabolism regulation, neuroprotection, and anti-tumor effects. In addition, DMY may play a role in cardiovascular disease by resisting oxidative stress and participating in the regulation of inflammation. This review is the first review that summaries the applications of dihydromyricetin in cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and diabetic cardiomyopathy. We also clarified the underlying mechanisms and signaling pathways involved in the above process. The aim of this review is to provide a better understanding and quick overview for future researches of dihydromyricetin in the field of cardiovascular diseases, and more detailed and robust researches are needed for evaluation and reference.
The Sympetrum vulgatum (Linnaeus, 1758) complex is composed of the subspecies S. vulgatum vulgatum, S. vulgatum decoloratum (Selys, 1884) and S. vulgatum ibericum Ocharan, 1985 in the West Palaearctic. These taxa have parapatric distributions and noticeable morphological differences in colour and body size, and their taxonomic status is debated. Here we revise the systematics of this group using molecular taxonomy, including molecular analyses of mitochondrial (cytochrome c oxidase subunit I, COI) and nuclear (internal transcribed spacer, ITS1) DNA taking into account known morphological differences. Each subspecies has a unique and differentiated COI haplotype, although divergences among them are low (0.4% maximum uncorrected p-distance). The subspecies are not differentiated by the nuclear marker ITS1. The genetic results for these taxa contrast with the deep divergence of the sister species S. striolatum (Charpentier, 1840). Given current evidence, we propose to maintain the subspecific status of the S. vulgatum complex and hypothesize their biogeographical history. It is likely that the three subspecies became isolated during one of the latest glacial periods, each in a different refugium: S. vulgatum ibericum possibly occupied the Iberian Peninsula, S. vulgatum vulgatum the Balkan Peninsula or territories further east and S. vulgatum decoloratum Anatolia., Joan C. Hinojosa, Ricard Martín, Xavier Maynou, Roger Vila., and Obsahuje bibliografii