Diapause is a common dormancy strategy exhibited by many species of invertebrates and insects to temporarily avoid seasonally recurring unfavourable conditions for their development, most usually in winter. Less frequently, a prolonged diapause lasting two or more years is described in species living in unpredictable environments where it is adaptive, but with significant costs. In this paper we examine the occurrence of prolonged diapause in the lycaenid butterfly Tomares ballus. Pupae of this species undergo an obligate diapause from mid-May to late January the following year. However, during our rearing experiments (from 2009 to 2016) the emergence of adults occurred sequentially and a fraction of the pupae remained in diapause for up to seven years. The annual percentage emergence after the first year of diapause was 45.6%, and only barely exceeded 50.0% in 2015. Remarkably, 12 pupae (11.4% of the initial brood) remained in diapause in their eighth year. The negative exponential equation fitted to the emergence data suggests that further emergences may occur within the next five years. Therefore, the potential for successful prolonged diapause of T. ballus pupae may be more than 10 years. The adaptive value of this strategy is discussed in relation to the effects of adverse and unpredictable weather during the flight period of the butterfly, intra-guild competition, parasitoids and changes in habitat quality. We suggest that this strategy may also be exhibited by other species of Mediterranean lycaenids., Rafael Obregón, Juan Fernández Haeger, Diego Jordano., and Obsahuje bibliografii
Excessive LDL cholesterol concentration together with subclinical inflammation, in which macrophages play a central role, are linked pathologies. The process starts with the accumulation of macrophages in white adipose tissue and the switch of their polarization toward a pro-inflammatory phenotype. The proportion of pro-inflammatory macrophages in adipose tissue is related to the main risk predictors of cardiovascular disease. The cholesterol content of phospholipids of cell membranes seems to possess a crucial role in the regulation of membrane signal transduction and macrophage polarization. Also, different fatty acids of membrane phospholipids influence phenotypes of adipose tissue macrophages with saturated fatty acids stimulating pro-inflammatory whereas ω3 fatty acids antiinflammatory changes. The inflammatory status of white adipose tissue, therefore, reflects not only adipose tissue volume but also adipose tissue macrophages feature. The beneficial dietary change leading to an atherogenic lipoprotein decrease may therefore synergically reduce adipose tissue driven inflammation.
Adrenergic receptors (ARs) are the primary targets of catecholamines released from the sympathetic nerve endings during their activation. ARs play a central role in autonomic nervous system and serve as important targets of widely used drugs. Several ARs gene polymorphisms were found to be associated with cardiovascular disease in previous clinical studies. Although more precise mechanism of the polymorphisms influence on autonomic control of cardiovascular system was studied in many previous physiological studies, their results are not unequivocal. This paper reviews the results of clinical and physiological studies focused on the impact of selected common single nucleotide polymorphisms of ARs genes involved in sympathetic control on cardiovascular system and its control. In summary, many studies assessed only a very limited range of cardiovascular control related parameters providing only very limited view on the complex cardiovascular control. The overview of partially contradicting results underlines a need to examine wider range of cardiovascular measures including their reactivity under various stress conditions requiring further study. It is expected that an effect of one given polymorphism is not very prominent, but it is suggested that even subtle differences in cardiovascular control could – on a longer time scale – lead to the development of severe pathological consequences.
A new genus, Afromuelleria gen. n., assigned to the tribe Trachyphloeini Lacordaire, 1863, is described for four South African species of weevils: A. awelani sp. n., A. baobab sp. n., A. limpopo sp. n. and A. venda sp. n. All species are illustrated and keyed. Taxonomic status of the new genus is discussed and compared with similar genera of Trachyphloeini and Embrithini Marshall, 1942.
Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to 17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.
There are concerns about altered vascular functions that could play an important role in the pathogenesis and influence the severity of chronic disease, however, increased cardiovascular risk in paediatric cystic fibrosis (CF) has not been yet fully understood. Aim was to analyze vascular disease risk and investigate changes over times in CF and controls. We prospectively enrolled 22 CF subjects (a median age of 16.07 years), and 22 healthy demographically matched controls (a median age of 17.28 years) and determined endothelial function. We utilized a combined diagnostic approach by measuring the plethysmographic Reactive Hyperemia Index (RHI) as the post-to preocclusive endothelium-dependent changes of vascular tone, and biomarkers that are known to be related to endothelial dysfunction (ED): asymmetric dimethyl arginine (ADMA), high-sensitive CRP (hsCRP), VCAM-1 and E-selectin. RHI values were significantly lower in CF young adults (p<0.005). HsCRP (p<0.005), E-selectin (p<0.001) and VCAM-1 (p<0.001) were significantly increased in CF patients since childhood. The findings have provided a detailed account of the ongoing process of microvascular dysfunction with gradual progression with the age of CF patients, making them further at risk of advanced vascular disease. Elevations of biomarkers in CF children with not yet demonstrated RHI changes but with significantly reduced RHI in adulthood and lipid profile changes indicate the possible occurrence of ED with CF-related specific risk factors over time and will enable us to provide the best possible support.
Ageing is accompanied by deterioration in physical condition and a number of physiological processes and thus a higher risk of a range of diseases and disorders. In particular, we focused on the changes associated with aging, especially the role of small molecules, their role in physiological and pathophysiological processes and potential treatment options. Our previously published results and data from other authors lead to the conclusion that these unwanted changes are mainly linked to the hypothalamic-pituitary-adrenal axis can be slowed down, stopped, or in some cases even reversed by an appropriate treatment, but especially by a life-management adjustment., Martin Hill, Zdeněk Třískala, Pavla Honců, Milada Krejčí, Jiří Kajzar, Marie Bičíková, Leona Ondřejíková, Dobroslava Jandová, Ivan Sterzl., and Obsahuje bibliografii
The incidence of cerebrovascular diseases increases significantly with aging. This study aimed to test the hypothesis that aging may influence the protein kinase A (PKA)-dependent vasodilation via RyR/BKCa pathway in the middle cerebral arteries (MCA). Male Sprague-Dawley rats were randomly divided into control (4-6 month-old) and aged (24-month-old) groups. The functions of MCA and ion channel activities in smooth muscle cells were examined using myograph system and patch-clamp. Aging decreased the isoproterenol/forskolin-induced relaxation in the MCA. Large-conductance Ca2+-activated-K+ (BKCa) channel inhibitor, iberiotoxin, significantly attenuated the forskolininduced vasodilatation and hyperpolarization in the young group, but not in the aged group. The amplitude and frequency of spontaneous transient outward currents (STOCs) were significantly decreased in the aged group. Single channel recording revealed that the mean open time of BKCa channels were decreased, while an increased mean closed time of BKCa channels were found in the aged group. The Ca2+/voltage sensitivity of the channels was decreased accompanied by reduced BKCa α and β1-subunit, the expression of RyR2, PKA-Cα and PKA-Cβ subunits were also declined in the aged group. Aging induced down-regulation of PKA/BKCa pathway in cerebral artery in rats. The results provides new information on further understanding in cerebrovascular diseases resulted from agerelated cerebral vascular dysfunction.
Cytochrome P450s (P450s) involved in insecticide resistance reduce the efficacy of insecticide-based vector control by rendering vector control ineffective. They are recorded in many species of vectors and have various constitutive and insecticide induction profiles. In this study, the isolation and prediction of the structure of a P450 from a strain of Aedes aegypti originating from Malaysia is reported. Quantitative mRNA expression of this gene and a previously reported P450, CYP4H28v2, in the developmental stages of the mosquito after exposure to sub-lethal concentrations of insecticides is also reported. The isolated P450, CYP4H31v2, is an allelic variant of CYP4H31 and contains several conserved motifs of P450s. The secondary structure of the protein is mostly made up of alpha helices and random coils. The tertiary structure was generated using homology modeling and was of good quality based on structure validation using protein structure assessment tools. CYP4H28v2 and CYP4H31v2 were differentially expressed in the developmental stages of the vector, with a significantly increased expression in adult males. The genes were significantly over-expressed in larvae exposed to deltamethrin and permethrin for 6 h. In the DDT-treated larvae, only CYP4H31v2 was significantly over-expressed after a 6 h exposure. Under-expression of the genes was predominant in larvae treated with the organophosphates malathion and temephos. Though the functions of these P450s are unknown, their response to induction by exposure to insecticides indicates the likely involvement of these genes in insecticide tolerance. and Fatma M. A. El-Garj, Mustafa F.F. Wajidi, Silas W. Avicor.
Epidemiological and clinical studies suggest that asthma is associated with adverse cardiovascular outcomes, but its mechanism is uncertain. 5-Hydroxytryptamine (5-HT) is a mediator involved in asthma and in cardiovascular functioning. Thus, in the present study, we explored whether allergic sensitization in guinea pigs modifies 5-HT-induced contractile responses and 5-HT2A receptor expression in thoracic aorta rings. We found that sensitization produced a significant increase of 100 µM 5-HT-induced contractions of aorta rings (~27 % greater contraction than in non-sensitized animals, p<0.05). Preincubation with 10 nM ketanserin (a 5-HT2A receptor antagonist) reduced by ~30 % (p=0.003) and ~36 % (p=0.005) the area under the curve of 5-HT-induced contractions in aortas from non-sensitized and sensitized animals, respectively. There were no differences between sensitized and non-sensitized animals with respect to mRNA (qPCR) and protein (Western blot) expression of 5-HT2A receptor in thoracic aortas. We concluded that in this guinea pig model of asthma, allergic sensitization is not confined to airways, but also affects arterial contractile responses to 5-HT; changes in the expression of the 5-HT2A receptor appear not to be involved in this phenomenon.