Examinations of nematodes collected from some marine fishes off the southwestern coast of Java, Indonesia in 2000 and 2001 revealed the presence of the following six species: ascaridoids Ichthyascaris grandis sp. n. from the intestine of Lophiomus setigerus (Vahl), I. cf. longispicula Li, Liu, Liu et Zhang, 2012 from the intestine of Conger cinereus Rüppel, Ichthyascaris sp. from the body cavity of Lobotes surinamensis (Bloch), and Raphidascaroides halieutaeae Yin, 1983 from the intestine of Halieutaea stellata (Vahl), and philometrids Philometra ivaschkini Parukhin, 1976 from the stomach wall of Trichiurus lepturus Linnaeus and P. psettoditis Moravec, Walter et Yuniar, 2012 from the body cavity (liver) of Psettodes erumei (Bloch et Schneider). Descriptions of these nematodes based on light and scanning electron microscopical studies are provided. The new species I. grandis sp. n. is mainly characterised by large body measurements (males and females up to 41.8 mm and 73.6 mm long, respectively), the length of spicules (0.99-1.05 mm), the tail tip usually without rudimentary spines and by the presence of 44-53 pairs of caudal papillae, eight to twelve of which being postanals. In addition to new data on the morphology of R. halieutaeae and other nematodes recorded, the 11 species of Raphidascaroides Yamaguti, 1941 poorly described from marine fishes in South Asia and reviewed in the monograph of Sood (2017) are considered species inquirendae and incertae sedis.
The African continent has a rich diversity of fish and amphibians in its inland water systems that serve as hosts for monogeneans of seven genera of the Gyrodactylidae van Beneden et Hesse, 1832. In August 2011, eight gyrodactylid parasites were collected from the gills of two specimens of bulldog, Marcusenius macrolepidotus (Peters), from Lake Kariba, Zimbabwe. Morphometric evaluation and sequencing of 18S rDNA confirmed that the specimens represented a species of a new viviparous genus, Tresuncinidactylus wilmienae gen. et sp. n. The attachment apparatus consists of a single pair of large slender hamuli with prominently flattened roots that are connected by a simple, narrow dorsal bar. The ventral bar is small and possesses a thin lingulate membrane but no evident anterolateral processes. There are 16 marginal hooks of one morphological type, but of three different sizes, with large falculate sickles that are proportionaly equal in length to the length of their handles. The two largest pairs of marginal hooks are positioned closest to the opisthaptoral peduncle, the neighbouring two pairs of medium-sized marginal hook sickles are situated along the lateral margins of the opisthaptor. Four pairs of smallest marginal hooks are positioned along the posterior margin of the opisthaptor. The male copulatory organ consists of a muscular pouch armed with approximately 30 gracile spines. Phylogenetic analyses of partial sequences of the 18S rDNA using Maximum Likelihood and Bayesian Inference placed the new genus within the lineage of solely African genera and suggests Afrogyrodactylus Paperna, 1968, Citharodactylus Přikrylová, Shinn et Paladini, 2017 and Mormyrogyrodactylus Luus-Powell, Mashego et Khalil, 2003 as genera most closely related to the new genus., Iva Přikrylová, Maxwell Barson, Andrew P. Shinn., and Obsahuje bibliografii
During the years 2019 and 2020, I conducted a bird survey transect in the Bohemian Forest. I did not record any changes in habitat structure or weather conditions between the two years. The two surveys differed in sampling effort, which was significantly lower in 2020 (n = 5 visits) than 2019 (n = 14 visits). I found that sampling effort affected the assessment of avian community diversity but did not affect the total number of individuals recorded. I also recorded a similar pattern in the cumulative number of species between the two breeding seasons, but 80% of species were recorded ten days earlier with the higher sampling effort. In the year with the lower sampling effort, I recorded fewer species than in the year with higher sampling effort. In both study periods, avian community diversity peaked during May and June. These results suggest that even a sampling effort three times lower is still sufficient to detect most species if the minimal number of visits are conducted. The pattern of detectability during the breeding season differed significantly among species. Most species (n = 24) showed a decreasing linear detectability throughout the summer months (e.g. Turdidae or Muscicapidae), most probably due to their breeding activities. In two species (willow tit Poecile montanus and European goldfinch Carduelis carduelis), this linear relationship was reversed, probably due to singing of young birds from the previous breeding season and the effect of the autumn equinox on birdsong activity. Many species (n = 21) did not show any trend and the rest, mainly migratory species, showed non-linear relationships with the peak in the middle of the breeding season. The differences in trends of detectability (i.e. song activity) among bird species are therefore directly linked with their life history.
Parasitic infections of the South China tigers in the Meihua Mountains have not been explored previously. Faeces of 22 South China tigers from the China Tiger Park in the Meihua Mountains were examined. Eggs of ascaridoid nematodes and oocysts of coccidia were detected by Mini-FLOTAC assay. Morphological observation and molecular characterisation of the oocysts were carried out. The prevalence of Toxascaris leonina (von Linstow, 1902) was 18% (4/22), and the highest egg per gram (EPG) count in the faeces was 27,150. The prevalence of Cystoisospora sp. was 45% (1 0/22) and the highest oocysts per gram (OPG) in the faeces was 6,000. In addition, we found one ascaridoid nematode in the South China tiger's faeces and was molecularly and morphologically identified as T. leonina. The oocysts in the faeces were sporulated in vitro and identified as Cystoisospora sp. Amplification of full-length internal transcribed spacers (ITS) resulted in sequences 1,622 bp long. Using the sequences, Cystoisospora sp. of the South China tiger was closest to Isospora belli (Wenyon, 1923) and Cystoisospora suis (Biester, 1934).
Large amounts of antibiotics and microplastics are used in daily life and agricultural production, which affects not only plant growth but also potentially the food safety of vegetables and other plant products. Fast detection of the presence of antibiotics and microplastics in leafy vegetables is of great interest to the public. In this work, a method was developed to detect sulfadiazine and polystyrene, commonly used antibiotics and microplastics, in vegetables by measuring and modeling photosystem II chlorophyll a fluorescence (ChlF) emission from leaves. Chrysanthemum coronarium L., a common beverage and medicinal plant, was used to verify the developed method. Scanning electron microscopy, transmission electron microscopy, and liquid chromatograph-mass spectrometer analysis were used to show the presence of the two pollutants in the samples. The developed kinetic model could describe measured ChlF variations with an average relative error of 0.6%. The model parameters estimated for the chlorophyll a fluorescence induction kinetics curve (OJIP) induction can differentiate the two types of stresses while the commonly used ChlF OJIP induction characteristics cannot. This work provides a concept to detect antibiotic pollutants and microplastic pollutants in vegetables based on ChlF.
In recent years, an emerging dermocystidiosis caused by Dermocystidium anguillae Spangenberg, 1975 has been found to pose a threat to the culture of American eel, Anguilla rostrata (Lesueur), as well as Chinese perch, Siniperca chuatsi (Basilewsky), in China. Dermocystidium anguillae was originally described from European eel, Anguilla anguilla (Linnaeus), and it is thus important to identify the possible source of this pathogen. In the present study, we compared D. anguillae from European eels cultured in China with those from American eels. Molecular analysis showed that the SSU rDNA of D. anguillae infecting European eels was identical to that of D. anguillae infecting American eels, suggesting their conspecificity. To investigate the source of D. anguillae causing dermocystidiosis in American eels cultured in China, a specific PCR assay for the detection of D. anguillae was developed with high sensitivity (10-6 ng/µl of D. anguillae genomic DNA). Using the present molecular detection method, the water and sediment of culture ponds, fish feed and American eel elvers imported from America were screened for the presence of D. anguillae. No amplicons were detected from the water, sediment and fish feed samples. However, positive amplicons were found in American eel elvers, indicating that D. anguillae has been introduced from American eel elvers to China. It is suggested that American eel elvers imported from America should be examined for the presence of D. anguillae before their exportation abroad to prevent the spread of this pathogen.
The Tomsk region located in the south of Western Siberia is one of the most high-risk areas for tick-borne diseases due to elevated incidence of tick-borne encephalitis and Lyme disease in humans. Wild birds may be considered as one of the reservoirs for tick-borne pathogens and hosts for infected ticks. A high mobility of wild birds leads to unpredictable possibilities for the dissemination of tick-borne pathogens into new geographical regions. The primary goal of this study was to evaluate the prevalence of tick-borne pathogens in wild birds and ticks that feed on them as well as to determine the role of different species of birds in maintaining the tick-borne infectious foci. We analysed the samples of 443 wild birds (60 species) and 378 ticks belonging to the genus Ixodes Latraille, 1795 collected from the wild birds, for detecting occurrence of eight tick-borne pathogens, the namely tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and species of Borrelia, Rickettsia, Ehrlichia, Anaplasma, Bartonella and Babesia Starcovici, 1893, using RT-PCR/or PCR and enzyme immunoassay. One or more tick-borne infection markers were detected in 43 species of birds. All markers were detected in samples collected from fieldfare Turdus pilaris Linnaeus, Blyth's reed warbler Acrocephalus dumetorum Blyth, common redstart Phoenicurus phoenicurus (Linnaeus), and common chaffinch Fringilla coelebs Linnaeus. Although all pathogens have been identified in birds and ticks, we found that in the majority of cases (75.5 %), there were mismatches of pathogens in birds and ticks collected from them. Wild birds and their ticks may play an extremely important role in the dissemination of tick-borne pathogens into different geographical regions., Igor G. Korobitsyn, Nina S. Moskvitina, Oleg Yu. Tyutenkov, Sergey I. Gashkov, Yulia V. Kononova, Sergey S. Moskvitin, Vladimir N. Romanenko, Tamara P. Mikryukova, Elena V. Protopopova, Mikhail Yu. Kartashov, Eugene V. Chausov, Svetlana N. Konovalova, Natalia L. Tupota, Alexandra O. Sementsova, Vladimir A. Ternovoi, Valery B. Loktev., and Obsahuje bibliografii
Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema – increased brain water content (BWC) – needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.
Chronic hepatitis B (CHB) is caused by the Hepatitis B virus (HBV) and affects millions of people worldwide. Developing an effective CHB therapy requires using in vivo screening methods, such as mouse models reflecting CHB based on hydrodynamic delivery of plasmid vectors containing a replication-competent HBV genome. However, long-term expression of HBV proteins is accompanied by production of progeny virions, thereby requiring a Biosafety Level (BSL) 3 animal facility. In the present study, we introduced a point mutation in the START codon of the HBV polymerase to develop a mouse model reflecting chronic hepatitis B infection without formation of viral progeny. We induced the mouse model by hydrodynamic injection of adeno-associated virus plasmid vector (pAAV) and minicircle plasmid (pMC) constructs into C57Bl/6 and C3H/HeN mouse strains, monitoring HBV antigens and antibodies in blood by enzyme-linked immunosorbent assay and analyzing liver expression of HBV core antigen by immunohistology. Persisting expression of viral antigens over 140 days (study endpoint) was observed only in the C3H/HeN mouse strain when using pAAV/1.2HBV-A and pMC/1.0HBV-D with pre-C and pre-S recombination sites. In addition, pAAV/1.2HBV-A in C3H/HeN sustained HBV core antigen positivity up to the study endpoint in C3H/HeN mice. Moreover, introducing the point mutation in the START codon of polymerase effectively prevented the formation of viral progeny. Our study establishes an accessible and affordable experimental paradigm for developing a robust mouse model reflecting CHB suitable for preclinical testing of anti-HBV therapeutics in a BSL2 animal facility.
Congenital toxoplasmosis is reportable disease in Europe. To prevent it antibody serological tests were introduced in several European countries as a part of screening programmes. Immunoglobulin G (IgG) avidity index testing is one of these tests for diagnosing acute infection with Toxoplasma gondii (Nicolle et Manceaux, 1908) in pregnant women. However, a low or moderate IgG avidity index can give inconclusive results for predicting woman's status. From June 2012 until the end of 2014, 17,990 women were included in the national screening program to prevent congenital toxoplasmosis. One hundred and twenty-six women were consecutively included in the study because they had low or moderate IgG avidity. Every woman with possible acute toxoplasmosis was followed up every month till delivery. Fifty-eight of 126 (46%) women got infected in months before current pregnancy, 39 women (31%) were infected early in pregnancy. Twenty-nine pregnant women of 126 (23%) got infected in the second/third trimester of pregnancy. New cut off for IgG avidity index was 0.11. With this cut off, we were able to exclude T. gondii acute infection in the first trimester with very good diagnostic accuracy (area under the curve (AUC) = 0.95, 95% confidence Interval (CI) 0.91-0.99, sensitivity 0.95, specificity 0.86). If an IgG avidity index above 0.11 is measured in a woman's serum and she is in the first trimester of pregnancy, then a odds ratio (OR) for acute infection with T. gondii is below 1 (OR 0.11, 95% CI 0.05-0.25, P < 0.0001). If we measure IgG avidity index that is ≥ 0.11 in the first trimester of pregnancy, we can exclude infection with T. gondii with good diagnostic accuracy in our cohort of women. With a new cut off we could reduce number of invasive procedures such as amniocentesis and put less pregnant women in distress.