Our previous experiments revealed that water intoxication and osmotic BBB disruption in the rat allow penetration of high- molecular substances into the brain and that resulting changes in the internal environment of th e CNS lead to pathological development, such as the loss of integrity of myelin. The aim of the present study was to determine whether the previously described phenomena are associated with increased water content in the brain. To answer the question following methods were used: a) water intoxication : intraperitoneal administration of distilled water, b) osmotic BBB disruption: application of mannitol (20 %) selectively into the internal carotid artery, c) brain wet weight was measured after decapitation, and subsequently (after six days in thermostat set at 86 °C) the dry weight were estimated d) in animals with 20 % and 30 % hyperhydration the degree of myelin deterioration was estimated e) animal locomotor activity was tested by continuous behavior tracking and analysis. Brai n water content after water intoxication and following the administration of mannitol was higher than in the control group. Different degrees of hyperhydration led to different levels of brain water content and to different degrees of myelin impairment. Hyperhydration corresponding to 20 % of the body weight brought about lower locomotor activity. Increased water content in the brain after the BBB osmotic disruption is surprising because this method is frequently used in the clinical practice., P. Kozler, V. Riljak, J. Pokorný., and Obsahuje bibliografii a bibliografické odkazy
Brain edema is a fatal pathological state in which brain volume increases as a result of abnormal accumulation of fluid within the brain parenchyma. A key attribute of experimentally induced brain edema – increased brain water content (BWC) – needs to be verified. Various methods are used for this purpose: specific gravimetric technique, electron microscopic examination, magnetic resonance imaging (MRI) and dry/wet weight measurement. In this study, the cohort of 40 rats was divided into one control group (CG) and four experimental groups with 8 rats in each group. The procedure for determining BWC using dry/wet weight measurement was initiated 24 h after the completion of edema induction by the water intoxication method (WI group); after the intraperitoneal administration of Methylprednisolone (MP) together with distilled water during edema induction (WI+MP group); 30 min after osmotic blood brain barrier disruption (BBBd group); after injection of MP via the internal carotid artery immediately after BBBd (BBBd + MP group). While induction of brain edema (WI, BBBd) resulted in significantly higher BWC, there was no increase in BWC in the MP groups (WI+MP, BBBd+MP), suggesting a neuroprotective effect of MP in the development of brain edema.