Cytochrome P450s (P450s) involved in insecticide resistance reduce the efficacy of insecticide-based vector control by rendering vector control ineffective. They are recorded in many species of vectors and have various constitutive and insecticide induction profiles. In this study, the isolation and prediction of the structure of a P450 from a strain of Aedes aegypti originating from Malaysia is reported. Quantitative mRNA expression of this gene and a previously reported P450, CYP4H28v2, in the developmental stages of the mosquito after exposure to sub-lethal concentrations of insecticides is also reported. The isolated P450, CYP4H31v2, is an allelic variant of CYP4H31 and contains several conserved motifs of P450s. The secondary structure of the protein is mostly made up of alpha helices and random coils. The tertiary structure was generated using homology modeling and was of good quality based on structure validation using protein structure assessment tools. CYP4H28v2 and CYP4H31v2 were differentially expressed in the developmental stages of the vector, with a significantly increased expression in adult males. The genes were significantly over-expressed in larvae exposed to deltamethrin and permethrin for 6 h. In the DDT-treated larvae, only CYP4H31v2 was significantly over-expressed after a 6 h exposure. Under-expression of the genes was predominant in larvae treated with the organophosphates malathion and temephos. Though the functions of these P450s are unknown, their response to induction by exposure to insecticides indicates the likely involvement of these genes in insecticide tolerance. and Fatma M. A. El-Garj, Mustafa F.F. Wajidi, Silas W. Avicor.
Classical biological control is an important means of managing the increasing threat of invasive plants. It constitutes the introduction of natural enemies from the native range of the target plant into the invaded area. This method may be the only cost-effective solution to control the rapidly expanding common ragweed, Ambrosia artemisiifolia, in non-crop habitats in Europe. Therefore, candidate biocontrol agents urgently need to be assessed for their suitability for ragweed control in Europe. A previous literature review prioritized the host-specific leaf beetle Ophraella slobodkini as a candidate agent for ragweed control in Europe, whereas it rejected its oligophagous congener O. communa. Meanwhile, O. communa was accidentally introduced and became established south of the European Alps, and we show here that it is expanding its European range. We then present a short version of the traditional pre-release risk-benefit assessment for these two candidate agents to facilitate fast decision-making about further research efforts. We selected two complementary tests that can be conducted relatively rapidly and inform about essential risks and benefits. We conducted a comparative no-choice juvenile performance assay using leaves of ragweed and sunflower, the most important non-target plant, in Petri dishes in climatic conditions similar to that in the current European range of O. communa. This informs on the fundamental host range and potential for increasing abundance on these host plants. The results confirm that O. slobodkini does not survive on, and is hence unlikely to cause severe damage to sunflower, while O. communa can survive but develops more slowly on sunflower than on ragweed. In parallel, our species distribution models predict no suitable area for the establishment of O. slobodkini in Europe, while O. communa is likely to expand its current range to include a maximum of 18% of the European ragweed distribution. Based on this early assessment, the prioritization and further assessment of O. slobodkini seem unwarranted whereas the results urgently advocate further risk-benefit analysis of O. communa. Having revealed that most of the European area colonized by ragweed is unlikely to be suitable for these species of Ophraella we suggest the use of such relatively short and cheap preliminary assessment to prioritise other candidate agents or strains for these areas., Suzanne T. E. Lommen, Emilien F. Jolidon, Yan Sun, José I. Bustamante Eduardo, Heinz Müller-Schärer., and Obsahuje bibliografii
Mytogenní vědecká jména plazů často pocházejí od antických nestvůr a podsvětních bytostí. U obojživelníků se setkáváme s vodními božstvy a nymfami. Názvy ryb bývají odvozeny na jedné straně od mýtických oblud, na straně druhé pak od krasavic a krasavců., Mythical scientific names of reptiles are often inspired by ancient monsters and underworld beings. Among amphibians we can meet water gods and goddesses, and nymphs. The names of fishes are frequently derived either from mythic monsters or from beauties and heroes., and Tomáš Pavlík.
Flowers of dicotyledonous plants host communities of arthropod species. We studied the community associated with dandelion (Taraxacum section Ruderalia), a complex of apomictic micro-species abundant in central Europe. Identification of microspecies in the field was impracticable. These plants produce an abundance of flowers that host arthropod communities that are not yet fully documented. We investigated species occurrence, its diurnal and seasonal variation and some of the factors that determine the abundance of the dominant species. Insect and spiders were collected from 2010 to 2012 at a locality in Prague. Whole capitula were harvested at weekly intervals and resident arthropods were identified. Diurnal variation in insect presence and the effect of pollen and microclimate on some of the species were also examined. The insect community (> 200 species) consisted mainly of species of Hymenoptera (86 spp.), Coleoptera (56 spp.), Diptera (46 spp.) and Heteroptera (23 spp.). The most abundant were Thysanoptera (2 spp.). Pollen eaters/collectors and nectar feeders dominated over predators and occasional visitors. From April to mid-August, the insect community was dominated by Coleoptera, and later by Diptera and Hymenoptera. Except for Meligethes spp. and species breeding in the capitula, the insects occupied flowers during the daytime when the flowers were open (10-12 h in spring and only 2-4 h in late summer). The presence of Meligethes spp. in particular flowers was associated with the presence of pollen; the occurrence of Byturus ochraceus with pollen and flower temperature. Although pollination is not necessary, dandelion plants produce both nectar and pollen. The community of arthropods that visit dandelion flowers is rich despite their being ephemeral.The composition of local faunas of flower visitors, presence of floral rewards and flower microclimate are important factors determining the composition of the flower community., Alois Honěk, Zdenka Martinková, Jiří Skuhrovec, Miroslav Barták, Jan Bezděk, Petr Bogusch, Jiří Hadrava, Jiří Hájek, Petr Janšta, Josef Jelínek, Jan Kirschner, Vítězslav Kubáň, Stano Pekár, Pavel Průdek, Pavel Štys, Jan Šumpich., and Obsahuje bibliografii
Light trapping is the most widely used tool for determining the diversity of nocturnal Lepidoptera, but UV LEDs have yet to be used as light sources for the large-scale monitoring of Lepidoptera. We assessed the efficiency of this novel light source for sampling moths using a Heath type moth equipped with a strip of 150 high brightness UV LEDs (emission peak 398 nm, ~ 15 W) powered by a 12 V battery. We compared the number of individuals, the number of species and the Geometridae / Noctuidae ratio recorded for the samples collected using UV LED traps with those collected in two monitoring programs carried out in the same geographic region using two different light sources: a 200 W incandescent lamp (Rothamsted trap) and a 160 W mercury vapour lamp (manual catch). The total catch consisted of 61,120 individuals belonging to 699 species. The species richness rarefaction curves revealed that the Rothamsted trap collected fewer species and individuals than UV LED traps. Furthermore, the median numbers of species and individuals caught by UV LED traps fell within the range of those caught by mercury vapour lamp traps. In addition, the community composition recorded using incandescent lamps and UV LEDs was similar. The data obtained using UV LED traps, in absolute terms and in comparison with the other light sources and different sampling methods, clearly reveal that this light source is suitable for sampling macro-moth communities. For field work UV LEDs have many advantages, as they are resistant to mechanical damage, easily protected from heavy rain and energy efficient., Marco Infusino, Gunnar Brehm, Carlo Di Marco, Stefano Scalercio., and Obsahuje bibliografii
The majority of the conservation strategies for threatened dragonflies are designed to protect only their aquatic habitats. Sympetrum depressiusculum is a species threatened not only by the destruction of its aquatic habitats but also by its association with a specific terrestrial environment. In this study, we aimed to identify the key elements of the terrestrial environment of adult S. depressiusculum. We used generalized linear mixed models to determine habitat preferences of adults and the particular features of habitat patches, such as vegetation cover, vegetation structure and the availability of potential prey. Our results indicate that S. depressiusculum adults preferred mainly riparian vegetation but beyond ponds they utilized only certain terrestrial habitats (abandoned fields, meadows, forest clearings). Adults responded positively to habitat patches with a high cover of vegetation and suitable vegetation structure. Adult abundance was affected also by the distance of patches from the natal site. In an agricultural landscape, the availability of such habitat patches may be limited and could influence the abundance and distribution of this species. We suggest that conservation efforts for this species should not only focus on the larval environment but also include suitable surrounding terrestrial habitats. Effective management around natal sites should concentrate on maintaining a heterogeneous landscape, which is extensively managed (e.g. leaving several fields fallow, maintaining managed hay meadows)., Michal Hykel, Filip Harabiš, Aleš Dolný., and Obsahuje bibliografii
The macrozoobenthos in saline pools at dumps in a former coal mining area was studied over a period of two years. Due to specific environmental conditions these pools are unique in the Czech Republic. Extremely high values of salinity (up to 11‰) along with a low concentration of dissolved phosphorus (0.01-0.1 mg.l-1) are typical of some of the water in this area. The pools were grouped into three categories based on their conductivity values and treated using cow dung, municipal wastewater treatment sludge and inorganic NPK (nitrogen-phosphorus-potassium) fertilizer at doses recommended for carp ponds. The application of fertilizer had a positive effect on the density and biomass of all the groups in the macrozoobenthos. The highest and the lowest increases in macrozoobenthos biomass were recorded after the application of NPK and cow dung, respectively. However, the application of fertilizer had no effect on the diversity of macrozoobenthos. Chironomus aprilinus, recorded in the Czech Republic for the first time, inhabited all pools with conductivity ranges of between 5,000-16,000 µS.cm-1. The density of C. aprilinus larvae increased with increasing salinity reaching a maximum of about 17,083 ind.m-2 (biomass - 82 g.m-2). Analysis of C. aprilinus phenology revealed a bivoltine pattern with the summer generation of larvae reaching a maximum in June-July and the overwintering generation in October to November., Josef Matěna, Iva Šínová, Jakub Brom, Kateřina Novotná., and Obsahuje bibliografii
This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the first analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their ecological functional groups. Over the period of more than 25 years, there has been a significant decrease in aphid α-diversity, from 171 to 105 species. The gain, which is in species not previously recorded, was 17 taxa. The loss of biodiversity occurred despite the fact that these habitats are protected and are valuable regional biodiversity hotspots. The losses are mostly related to intensive human activity in adjacent areas, which, unfortunately, has resulted in the isolation of these small, protected environmental islands by the removal of ecological corridors. Since, as is shown in this study, the frequencies between individual biological and ecological groups of aphids have been retained, it would be possible to restrict this loss of biodiversity if appropriate actions are taken., Barbara Osiadacz, Roman Hałaj, Damian Chmura., and Obsahuje bibliografii
Duponchelia fovealis Zeller is a polyphagous insect that has been recently reported attacking strawberry plants (Fragaria x ananassa Duchesne). Despite its economic importance there are few studies on this pest because it is difficult to rear it in the laboratory. With a constant supply of insects, studies on alternative methods of pest control can be conducted. This study aimed at developing an artificial diet for rearing D. fovealis with biological characteristics similar to those reared on their natural diet. This study was carried out in a climate-controlled room (25°C ± 2°C, RH 70% ± 10%, and 14L : 10D). The natural diet consisted of 'San Andreas' strawberry leaves (D1), while the artificial diet (D2) was developed in which beans, casein, soy protein, yeast and wheat germ are used as sources of protein. Five instars were identified. D. fovealis completed its life cycle in 38 and 40 days when fed D1 and D2, respectively. Survival was highest for the larvae fed the artificial diet. Females fed D1 lay a mean of 300.2 ± 62.3 eggs, while those fed D2, 220.3 ± 41.8 eggs. The artificial diet is suitable for the continuous rearing of D. fovealis in the laboratory., Maria A. C. Zawadneak, Rodrimar B. Gonçalves, Alex S. Poltronieri, Bráulio Santos, Adélia M. Bischoff, Aline M. Borba, Ida C. Pimentel., and Obsahuje bibliografii
Severoameričtí raci (např. rak pruhovaný a rak signální vyskytující se i v ČR) jsou příkladem invazních živočichů, jejichž invazní potenciál je zesílen přenosem onemocnění nebezpečného pro příbuzné druhy z jiných geografických oblastí. Původcem nemoci, tzv. račího moru, je Aphanomyces astaci ze skupiny Oomycetes způsobující úhyny celých populací evropských raků. Račí mor se v Evropě vyskytuje už od 19. století a i v současnosti zůstává přes intenzívní výzkum jedním z nejvýznamnějších faktorů ohrožujících původní raky (u nás jde o raka říčního a raka kamenáče, u nichž bylo jen od roku 2004 zaznamenáno deset případů zdecimování populací touto nemocí)., North American crayfish species such as the Spiny-cheek Crayfish and the Signal Crayfish are examples of invasive animals with an ability to carry and transmit a disease lethal to their relatives from other parts of the world. The disease called the crayfish plague and caused by Aphanomyces astaci (Oomycetes) may eradicate whole populations of the indigenous European crayfish. The disease is known in Europe from the 19th century and despite intensive research it is still one of the main factors endangering indigenous crayfish., and Eva Kozubíková-Balcarová.