The physical conditions of a large variety of structures, such as giant HII regions, holes, shells and rings, present in the interstellar medium are reviewed. Such structures are thought to result from the energy input from OB associations in the form of ionizing radiation, strong stellar winds and supernova explosions.
The study of the effects produced by every single one of the energy sources is proposed here as the way to evaluate, understand, and relate the observed structures with a given energy input. In particular, predictions fron the study of the HII region evolution sround a stellar association are reviewed. Such an evolution , lasting 10^7 yr, accounts for the aging of the exciting stars. The resultant effects are then compared with the large (expecting and static) shells observed in our galaxy, and with alternative theoretical models.
A sequence of events, based on the observed properties and the theoretical models, is proposed here as a likely scenario for the evoluton of the environment of an OB association.
Brachiola algerae (Vavra et Undeen, 1970) Lowman, Takvorian et Cali, 2000, originally isolated from a mosquito, has been maintained in rabbit kidney cells at 29°C in our laboratory. This culture system has made it possible to study detailed aspects of its development, including spore activation, polar tube extrusion, and the transfer of the infective sporoplasm. Employing techniques to ultrastructurally process and observe parasite activity in situ without disturbance of the cultures has provided details of the early developmental activities of B. algerae during timed intervals ranging from 5 min to 48 h. Activated and non-activated spores could be differentiated by morphological changes including the position and arrangement of the polar filament and its internal structure. The majority of spores extruded polar tubes and associated sporoplasms within 5 min post inoculation (p.i.). The multilayered interlaced network (MIN) was present in extracellular sporoplasms and appeared morphologically similar to those observed in germination buffer. Sporoplasms, observed inside host cells were ovoid, contained diplokaryotic nuclei, vesicles reminiscent of the MIN remnants, and their plasmalemma was already electron-dense with the "blister-like" structures, typical of B. algerae. By 15 min p.i., the first indication of parasite cell commitment to division was the presence of chromatin condensation within the diplokaryotic nuclei, cytoplasmic vesicular remnants of the MIN were still present in some parasites, and early signs of appendage formation were present. At 30 min p.i., cell division was observed, appendages became more apparent, and some MIN remnants were still present. By two hours p.i., the appendages became more elaborate and branching, and often connected parasite cells to each other. In addition to multiplication of the organisms, changes in parasite morphology from small oval cells to larger elongated "more typical" parasite cells were observed from 5 h through 36 h p.i. Multiplication of proliferative organisms continued and sporogony was well underway by 48 h p.i., producing sporonts and sporoblasts, but not spores. The observation of early or new infections in cell cultures 12-48 h p.i., suggests that there may also exist a population of spores that do not immediately discharge, but remain viable for some period of time. In addition, phagocytized spores were observed with extruded polar tubes in both the host cytoplasm and the extracellular space, suggesting another means of sporoplasm survival. and Finally, extracellular discharged sporoplasms tightly abutted to the host plasmalemma, appeared to be in the process of being incorporated into the host cytoplasm by phagocytosis and/or endocytosis. These observations support the possibility of additional methods of microsporidian entry into host cells and will be discussed.
The history of the journals "Photosynthetica" and "Photosynthesis Research" is traced from its beginning. Their development is related to the history of several publishers (Dr W. Junk Publishers, Martinus Nijhoff, Kluwer Academic Publishers). This account is based on recollections and records of the authors, Ad C. Plaizier, and René Marcelle (the first Editor-in-Chief of Photosynthesis Research). and Govindjee, Z. Šesták, W. R. Peters.
Short-term (2 h) treatment with 10 µM abscisic acid decreased stomatal conductance and net photosynthetic rate, and increased carbonic anhydrase activity in pea seedlings. The treatment with 10 µM methyl jasmonate did not significantly affect these parameters. and G. N. Lazova, M. I. Kicheva, L. P. Popova.
Pisum sativum (L.) plants were grown under "white" luminescent lamps, W [45 µ mol(quantum) m-2 s-1] or under the same irradiation supplemented with narrow spectrum red light-emitting diodes (LEDs), RE [λmax = 660 nm, Δλ = 20 nm, 40 µmol(quantum) m-2 s-1]. Significant differences in the chlorophyll (Chl) a fluorescence parameters, degree of State 1-State 2 transition, and the pigment-protein contents were found in plants grown under differing spectral composition. Addition of red LEDs to the "white light" resulted in higher effective quantum yield of photosystem 2 (PS2), i.e. F'v/F'm, linear electron transport (ϕPS2), photochemical quenching (qP), and lower non-photochemical quenching (qN as well as NPQ). The RE plants were characterised by higher degree State 1-State 2 transition, i.e. they were more effective in radiant energy utilisation. Judging from the data of "green" electrophoresis of Chl containing pigment-protein complexes of plants grown under various irradiation qualities, the percentage of Chl in photosystem 2 (PS2) reaction centre complexes in RE plants was higher and there was no difference in the total Chl bound with Chl-proteins of light-harvesting complexes (LHC2). Because the ratio between oligomeric and monomeric LHC2 forms was higher in RE plants, we suggest higher LHC2 stability in these ones. and N. M. Topchyi ... [et al.].
Annual plants transport a large portion of carbohydrates and nitrogenous compounds from leaves to seeds during the phase of reproductive growth. This study aimed to clarify how reproductive growth affects photosynthetic traits in leaves and matter transport within the plant in the annual herb Chenopodium album L. Plants were grown in pots and either reproductive tissues or axillary leaves were removed at anthesis. Matter transport was evaluated as temporal changes in dry mass (as a substitute of carbohydrates) and nitrogen content of aboveground organs: leaves, axillary leaves, stems and reproductive tissues. Photosynthetic capacity (light-saturated photosynthetic rate under ambient CO2 concentration), nitrogen, chlorophyll and soluble protein content were followed in the 20th leaf that was mature at the start of the experiment. Removal of reproductive tissues resulted in accumulation of dry mass in leaves and axillary leaves, and accumulation of nitrogen in stem as nitrogen resorption from leaves and axillary leaves proceeded with time. Removal of axillary leaves proportionally reduced dry mass and nitrogen allocation to reproductive tissues, thus affecting the quantity but not quality of seeds. Removal treatments did not alter the time course of photosynthetic capacity, nitrogen, chlorophyll or soluble protein content during senescence in the 20th leaf, but changed the photosynthetic capacity per unit of leaf nitrogen according to demand from reproductive tissues. Together, the results indicate that reproductive tissues affected carbon and nitrogen economy separately. The amount of carbon was adjusted in leaves through photosynthetic capacity and carbohydrate export from them, and the amount of nitrogen was adjusted by transport from stem to reproductive tissues. The plant's ability to independently regulate carbon and nitrogen economy should be important in natural habitats where the plant carbon-nitrogen balance can easily be disturbed by external factors.
The peptide surfactants are amphiphilic peptides which have a hydrophobic tail and a hydrophilic head, and have been reported to stabilize and protect some membrane proteins more effectively than conventional surfactants. The effects of a class of peptide surfactants on the structure and thermal stability of the photosynthetic membrane protein lightharvesting complex II (LHCII) in aqueous media have been investigated. After treatment with the cationic peptide surfactants A6K, V6K2, I5K2 and I5R2, the absorption at 436 nm and 470 nm decreased and the absorption at 500-510 nm and 684-690 nm increased. Moreover, the circular dichroism (CD) signal intensity in the Soret region also decreased significantly, indicating the conformation of some chlorophyll (Chl) a, Chl b, and the xanthophyll molecules distorted upon cationic peptide surfactants treatment. The anionic peptide surfactants A6D and V6D2 had no obvious effect on the absorption and CD spectra. Except for A6D, these peptides all decreased the thermal stability of LHCII, indicating that these peptides may reconstitute protein into a less stable conformation. In addition, the cationic peptide surfactants resulted in LHCII aggregation, as shown by sucrose gradient ultracentrifugation and fluorescence spectra. and S. Liu, Y. Qiu, D.-Y. Yu
Attention has recently been focused on endothelial function after a single high-fat meal, i.e. on the anticipated direct atherogenic effect of triglyceride-rich lipoproteins. Our study was designed to investigate the effect of a low-fat diet given for four weeks followed by a high-fat diet for another four weeks. At the end of each dietary period, a non-invasive ultrasound investigation of endothelial function of the brachial artery was performed along with laboratory tests. Endothelial function was measured immediately before the dietary load and after three and six hours in 11 healthy volunteers. The results were expressed as percentage of the changes in artery diameter at rest and during hyperemia; the data were processed using computer technology. When compared to the low-fat regimen, the total cholesterol content rose after the high-fat diet from 4.28 mmol/l to 5.15 mmol/l (p<0.05) in the whole group of volunteers. There was no difference between both dietary regimens in baseline triglycerides. The brachial artery dilatation under basal conditions was 5.26±2.88 mm after the high-fat diet compared with the value of 3.13±3.01 mm (p<0.05) after the low-fat diet. When measured individually endothelial function in the whole group of volunteers in the course of the day, the degree of arterial dilatation after one month on low-fat diet was 3.13±3.0 %, 3.88±2.5 % and 5.23±3.3 % at single measurement. When comparing arterial dilatation at two closest measurements, a non-significant trend, p>0.05 was seen in either case. The following values were obtained after one month on the high-fat diet: 5.26±2.9 %, 4.47±1.7 %, and 6.2±3.6 %; again showing a non-significant trend of p>0.05. In this study, a single high-fat meal at the different dietary regimen did not significantly influence the vasoreactivity of the brachial artery in young volunteers., T. Šejda, J. Kovář, J. Piťha, R. Cífková, E. Švandová, R. Poledne., and Obsahuje bibliografii
Contrary to clinical trials, experimental studies revealed that diabetes mellitus (DM) may initiate, besides increased myocardial vulnerability to ischemia-reperfusion injury (I/R) and pro/antioxidant dysbalance, development of adaptation leading to an enhanced tolerance to I/R. The aims were to characterize 1) susceptibility to ischemia-induced ventricular arrhythmias in the diabetic rat heart 2) its response to antioxidant N-acetylcysteine (NAC ) and a NOS inhibitor L-NAME, and 3) the effect of DM on endogenous antioxidant systems. Seven days after streptozotocin injection (65 mg/kg, i.p.), Langendorff-perfused control (C) and DM hearts were subjected to 30-min occlusion of the LAD coronary artery with or without prior 15-min treatment with L-NAME (100 μM) or NAC (4 mM). Total number of ventricular premature beats (VPB), as well the total duration of ventricular tachycardia (VT) were reduced in the DM group (from 533±58 and 37.9±10.2 s to 224.3±52.6 and 19±13.5 s; P<0.05). In contrast to the antiarrhythmic effects of L-NAME and NAC in controls group (VPB 290±56 and 74±36, respectively; P<0.01 vs. control hearts), application of both drugs in the diabetics did not modify arrhythmogenesis (L-NAME: VPB 345±136, VT 25±13 s; NAC: VPB 207±50, VT 12±3.9 s; P>0.05 vs non-treated diabetic hearts). Diabetic state was associated with significantly elevated levels of CoQ 10 and CoQ 9 (19.6±0.8 and 217.3±9.5 vs. 17.4± 0. 5 and 185.0±5.0 nmol/g, respectively, in controls; P<0.05), as well as α-tocopherol (38.6±0.7 vs. 31.5±2.1 nmol/g in controls; P<0.01) in the myocardial tissue. It is concluded that early period of DM is associated with enhanced resistance to ischemia-induced arrhythmias. Diabetes mellitus might induce adaptive processes in the myocardium leading to lower susceptibility to antioxidant and L-NAME treatment., J. Matejíková, J. Kucharská, D. Pancza, T. Ravingerová., and Obsahuje bibliografii a bibliografické odkazy