Rejskovití hmyzožravci (Soricidae) vydávají v nejrůznějších situacích mnoho typů hlasů. Dospělí jedinci se ozývají, pokud jsou v nebezpečí nebo se dostanou do potyčky s jiným jedincem svého druhu, během námluv a páření nebo při kontaktu s potomky. Také mláďata vydávají nejrůznější hlasy, jimiž se často snaží upozornit na své strádání nebo udržet kontakt s matkou a sourozenci. Přestože v poslední době přibývá publikací zabývajících se problematikou akustické komunikace rejskovitých, je to stále poměrně neprobádaná oblast. Mnohé otázky by mohly být zodpovězeny studiem bělozubky hnědé (Suncus murinus), která dobře prospívá i v péči člověka., Shrews (Soricidae) utter many types of vocalization in various situations. Adult individuals emit vocalizations when they are in danger or in a fight with conspecifics, during courtship and mating or when they keep contact with their offspring. Juveniles utter variable vocalizations mostly to prevent their discomfort and to keep contact with their mother and siblings. Although the number of publications has increased recently, acoustic communication among shrews still remains a quite unexplored field. Our knowledge might be significantly expanded by studying the Asian House Shrew (Suncus murinus), a species that can be successfully kept and bred in captivity., and Irena Schneiderová.
Eucalyptus is the tree of choice for wood production by farmers in Ethiopia. Although there are many claims about its harmful effect on ecology and water availability, little actual research exists. The main objective of this study was, therefore, to study the extent of harm of Eucalyptus on the ecosystem. This study was conducted at the Koga Watershed near Lake Tana in Ethiopia. Twenty-five farmers were interviewed and a field experiment with three replications was carried out to quantify the effect of Eucalyptus on various soil physical and chemical properties and maize crop measurements and to compare bulk density, soil moisture contents, maize crop counts and shading effects in fields bordered by Eucalyptus and Croton macrostachyus. Our results show that Eucalyptus decreased both soil nutrients and maize yields within 20 m of the trees. Although moisture content was not affected during the monsoon, it decreased faster within 30 m of the Eucalyptus trees than elsewhere. Soils become water repellent, too. Local farmers’ perception agreed with our experimental findings and indicated that Eucalyptus trees are exhausting the once productive land. They also reported that Eucalyptus dries up springs. Despite this, the growers insist on planting Eucalyptus because of its cash income.
The individual plant of Chinese ivy can produce three types of branches (creepy, climbing, and reproductive) during its development, which adapt to different environmental factors. An eco-physiological model was constructed to simulate leaf net photosynthetic rate (PN) of Chinese ivy (Hedera nepalensis var. sinensis) in subtropical evergreen broad-leaved forest based on leaf physiological and mathematical analysis. The model integrated the rate-limiting biochemical process of photosynthesis and the processes of stomatal regulation. Influence of environmental factors (solar radiation, temperature, CO2 concentration, vapour pressure deficit, etc.) on PN was also considered in our model; its parameters were estimated for leaves on three types of branch in the whole growing season. The model was validated with field data. The model could simulate PN of leaf on three types of branches accurately. Influence of solar radiation on leaf PN of three types of branches in different seasons was analyzed through the model with numerical analysis. and J. Yang ... [et al.].
This work describes the ecological characteristics of the intestinal helminth communities of 50 wolves (Canis lupus L.) from Spain. The species found were classified into three groups according to prevalence, intensity and intestinal distribution. Taenia hydatigena Pallas, 1766 and Uncinaria stenocephala (Railliet, 1884) are the core species of the community. Taenia multiceps (Leske, 1780) is a secondary species. The rest of the species, Alaria alata (Goeze, 1782), Taenia serialis (Gervais, 1847), Taenia pisiformis (Bloch, 1780), Dipylidium caninum (Linnaeus, 1758), Mesocestoides sp. aff. litteratus, Toxocara canis (Werner, 1782), Toxascaris leonina (von Linstow, 1902), Ancylostoma caninum (Ercolani, 1859) and Trichuris vulpis (Froelich, 1789), behave as satellite species. The linear intestinal distribution of all helminth species was analysed. The location of most species can be considered predictable, especially for core and secondary species. The analysis of interspecific relationships between infracommunities shows that negative associations are more numerous than positive associations. The role of A. caninum in the community is compared with that of U. stenocephala.
Plant density, planting time, harvest timing, and nitrogen influence on short-term gas-exchange properties of carrot cultivars, Topcut and Sugarsnax (Daucus carota L.) were investigated under field conditions. Net photosynthetic rate (PN), stomatal conductance
(gs), and transpiration rate (E) differed significantly with the cultivars studied. Both planting and harvest timing changed the midday PN rates. P N increased as harvest timing advanced regardless of planting time. Late planting combined with late harvesting registered the maximum P N rates (4.5 μmol m-2 s-1). The water-use efficiency (WUE) was altered by temperature at different harvest timings along with the choice of cultivar. Early harvested Sugarsnax had a higher WUE (2.29 mmol mol-1) than TopCut (1.64 mmol mol-1) as Sugarsnax exhibited more stomatal conductance than TopCut. These changes were principally governed by fluctuations observed with air temperature and photosynthetic photon flux density (PPFD) and altered by the sensitivity of the cultivars to ecological factors. Plant density did not affect the photosynthetic gas-exchange parameters. Our results suggest that carrots manage high population density solely through morphological adaptations with no photosynthetic adjustments. Carrot leaves responded to N application in a curvilinear fashion in both cultivars. N did not alter gs, E, or WUE in carrots. N, applied at a rate of 150 kg N ha-1, increased foliar N up to 2.98%. We conclude that 2.98% of foliar N is sufficient to achieve the maximum photosynthetic rates in processing carrots., A. Thiagarajan, R. Lada, A. Adams., and Obsahuje bibliografii
Phosphorus (P) is one of the limiting mineral nutrient elements in the typical steppe of Inner Mongolia, China. In order to find out the adaptive strategy of Caragana microphylla to low soil P status, we grew plants in P-deficient soil in April 2009 and gave a gradient of P addition ranging from 0 to 60 mg(P) kg-1(soil) from May 2010. Leaf traits were measured in September 2010. Both leaf growth and light-saturated photosynthetic rate (P max) were similar among different groups. Leaf nitrogen (N):P ratio indicated that the growth of C. microphylla was not P-limited in most of the Inner Mongolia typical steppe, which had an average soil available P content equal to 3.61 mg kg-1. The optimal P addition was 20 mg(P) kg-1(soil) for two-year-old plants of C. microphylla. Leaf mass area (LMA) and leaf dry matter content (LDMC) were enhanced with low P, and significantly negatively correlated with photosynthetic N-use efficiency (PNUE). Photosynthetic P-use efficiency (PPUE) increased with decreasing soil P and increasing leaf inorganic
P (Pi): organic P (Po) ratio, and showed no significant negative correlation with LMA or LDMC. P max of C. microphylla did not decline so sharply as it was anticipated. The reason for this phenomenon might be due to the increased PPUE through regulating the leaf total P allocation. C. microphylla had high P-use efficiency via both high PPUE and long P-retention time at low-P supply. The adaptation of C. microphylla to low-P supply provided a new explanation for the increased distribution of the species in the degraded natural grassland in Inner Mongolia, China., T. T. Zhao, N. X. Zhao, Y. B. Gao., and Obsahuje bibliografii
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment., D. H. Xu ... [et al.]., and Obsahuje bibliografii