The rubber tree (Hevea brasiliensis) is an important tropical crop with a high economic value that has been successfully cultivated in Xishuangbanna, China. Xishuangbanna has a long dry season (November-February) with cold nights and frequent fog events. Thus, it is important to select chilling-tolerant cultivars in order to understand better the role of fog in protecting rubber tree from chilling-induced photodamage. In this study, we examined the photosynthetic responses of six rubber tree cultivars (Lan 873, Yunyan 77-2, Yunyan 77-4, GT1, Reken 523, and Reyan 733-97) to night-chilling stress (0, 5, and 10°C) and two different irradiances (100 and 50% of full sunlight). Our results showed that all six cultivars could withstand nights at 10°C for three days, while night chilling at 0 and 5°C impaired photosynthesis, which was indicated by photoinhibition, decrease of soluble protein content, and accumulation of malondialdehyde. Reken 523 and Reyan 733-97 were more sensitive to night chilling than other cultivars. Low irradiance (50% of full sunlight) after the chilling treatment apparently mitigated the effect of night-chilling stress. It indicates that frequent fog events after cold nights might greatly contribute to the success of rubber tree cultivation in Xishuangbanna., Y.-H. Tian, H.-F. Yuan, J. Xie, J.-W. Deng, X.-S. Dao, Y.-L. Zheng., and Seznam literatury
Water stress usually impairs photosynthesis and plant growth. Acacia tortilis subsp. raddiana is well adapted to dry environments. The aim of the present study was to determine the impact of a progressive decrease in soil water content on photosynthetic-related parameters at the young seedling stage. Drought-induced plant responses occurred according to two types of kinetics. Water potential, stomatal conductance, and transpiration rates were rapidly affected by a decrease in soil water content, while chlorophyll fluorescence-related parameters and chlorophyll concentrations decreased only when soil water content was lower than 40%. The maximal efficiency of PSII photochemistry in the dark-adapted state remained unaffected by the treatment, whatever the stress duration. A. raddiana accumulated high concentrations of soluble sugars in relation to a stress-induced early stimulation of sucrose-phosphate synthase activity, while stimulation of invertase and sucrose synthase led to fructose accumulation only at the end of the stress period. We suggested that sugar accumulation may be involved in osmotic adjustment and protection of stressed tissues. A. raddiana was thus able to protect its photosynthetic machinery under drought conditions and may be considered as a promising species for revegetation of dry areas., S. Kebbas, S. Lutts, F. Aid., and Obsahuje bibliografii
The effect on traits of photosynthesis and water relations of assimilate demand was studied in olive tree that has strong alternate bearing. The diurnal and seasonal leaf gas exchanges, area dry mass, and saccharide and chlorophyll (Chl) contents were measured by comparing shoots with fruit of "on-trees" (heavy fruit load) with shoots without fruit on both "on-trees" and "off-trees" (light fruit load). In spite of large seasonal and diurnal differences, leaf net photosynthetic rate (PN), stomatal conductance (gs), sub-stomatal CO2 concentration (C1), transpiration rate (E), and respiration rate (RD) were not significantly influenced by fruit load or by the presence or absence of fruit on the shoot. An only exception was at the beginning of July when the one-year-old leaves on shoots with fruit had slightly higher PN and E than leaves on shoots without fruit. Water content, Chl and saccharide contents, and area dry mass of the leaf were not substantially influenced by the presence/absence of fruit on the shoot or fruit load. Hence the sink demand, associated with fruit growth, did not improve leaf photosynthetic efficiency in olive.
a1_Artemisia annua L. produces a compound called artemisinin that is a potent anti-malarial compound. However concentration of artemisinin within the plant is typically low (less than 0.8% of dry mass) and currently supply of the drug by the plant does not meet world demand. This investigation was carried out to determine whether high intensity light treatment would increase production of artemisinin in leaves of A. annua. Photoinhibition (14%) was induced in leaves of A. annua when they were subjected to 6 h of high-intensity light [2,000 μmol(photon) m-2 s-1]. Maximum photochemical efficiency of PSII showed a recovery of up to 95% within 24 h of light induced inhibition. During the light treatment, photochemical efficiency of PSII in leaves of the high-intensity light-treated plants was 38% lower than for those from leaves of plants subjected to a low-intensity-light treatment of 100 μmol(photon) m-2 s-1. Nonphotochemical quenching of excess excitation energy was 2.7 times higher for leaves treated with high-intensity light than for those irradiated with low-intensity light. Elevation in oxidative stress in irradiated leaves increased presence of reactive oxygen species (ROS) including singlet oxygen, superoxide anions, and hydrogen peroxide. Importantly, the concentration of artemisinin in leaves was two-fold higher for leaves treated with high-intensity light, as compared to those treated with low-intensity light. These results indicate that A. annua responds to high irradiance through nonphotochemical dissipation of light energy yet is subject to photoinhibitory loss of photosynthetic capacity. It can be concluded that A. annua is capable of rapid recovery from photoinhibition caused by high light intensity., a2_High light intensity also induced oxidative stress characterized by increased concentration of ROS which enhanced the content of artemisinin. Such a light treatment may be useful for the purpose of increasing artemisinin content in A. annua prior to harvest., M. E. Poulson, T. Thai., and Obsahuje seznam literatury
The effect of high temperature (HT) and dehydration on the activity of photosynthetic apparatus and its ability to restore membrane properties, oxygen evolution, and energy distribution upon rehydration were investigated in a resurrection plant, Haberlea rhodopensis. Plants growing under low irradiance in their natural habitat were desiccated to air-dry state at a similar light intensity [about 30 μol(photon) m-2 s-1] under optimal day/night (23/20°C) or high (38/30°C) temperature. Our results showed that HT alone reduced the photosynthetic activity and desiccation of plants at 38°C and it had more detrimental effect compared with desiccation at 23°C. The study on isolated thylakoids demonstrated increased distribution of excitation energy to PSI as a result of the HT treatment, which was enhanced upon the desiccation. It could be related to partial destacking of thylakoid membranes, which was confirmed by electron microscopy data. In addition, the surface charge density of thylakoid membranes isolated from plants desiccated at 38°C was higher in comparison with those at 23°C, which was in agreement with the decreased membrane stacking. Dehydration led to a decrease of amplitudes of oxygen yields and to a loss of the oscillation pattern. Following rehydration, the recovery of CO2 assimilation and fluorescence properties were better when desiccation was performed at optimal temperature compared to high temperature. Rehydration resulted in partial recovery of the amplitudes of flash oxygen yields as well as of population of S0 state in plants desiccated at 23°C. However, it was not observed in plants dehydrated at 38°C. and M. Velitchkova ... [et al.].
Mosses are plants of simple anatomical structure and as they occur in habitats characterised not only by major changes in the concentrations of carbon dioxide, they suffer the stress of periodic water shortages or submergence in water. The condition of hypoxia (submergence in water or CaCl2 solution) prompted the increase in daily fluctuations in malate content, particularly in the gametophores of Polytrichum piliferum Hedw. No significant increases in daily fluctuations of citrate were found in the hypoxia and post-hypoxia conditions. Placing gametophores for 168 h in air with a concentration of CO2 at ∼ 350 μmol mol-1, and 21% of oxygen, after being submerged for 24 h in water, reduced the daily fluctuations of malate and citrate. Keeping the plants in these conditions for a long time (120-168 h) produced the increase in photosynthesis intensity in the gametophores of Mnium undulatum Hedw. and P. piliferum by 13% and 51%, respectively, when compared with plants submerged for 24 h. The intensity of respiration during post-hypoxia, however, was markedly lower compared with the intensity of the process recorded in hypoxia, particularly in the gametophores of P. piliferum. The increased daily fluctuations of malate and NAD(P)H in the studied species under hypoxia could constitute an important element of adaptive strategy to these conditions. and G. Rut, A. Rzepka, J. Krupa.
Thermal stability of thylakoid membranes isolated from acclimated and non-acclimated wheat (Triticum aestivum L. cv. HD 2329) leaves under irradiation was studied. Damage to the photosynthetic electron transport activity was more pronounced in thylakoid membranes isolated from non-acclimated leaves as compared to thylakoid membrane isolated from acclimated wheat leaves at 35 °C. The loss of D1 protein was faster in non-acclimated thylakoid membrane as compared to acclimated thylakoid membranes at 35 °C. However, the effect of elevated temperature on the 33 kDa protein associated with oxygen evolving complex in these two types of thylakoid membranes was minimal. Trypsin digestion of the 33 kDa protein in the thylakoid membranes isolated from control and acclimated seedlings suggested that re-organisation of 33 kDa protein occurs before its release during high temperature treatment. and A. K. Singh, G. S. Singhal.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (Amax) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, Vcmax , and maximum rate of electron transport, Jmax), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (Amax/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas Jmax and
Vcmax did not correlate with Na. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with Amax was stomatal conductance (gs). An asymptotic function was fitted to the Amax-gs relationship, with R2 = 0.85. Amax, Vcmax, Jmax and gs varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in Amax with leaf age in rubber trees. and B. Kositsup ... [et al.].
The effects of actinic light (AL) intensity on the age dependence of nonphotochemical fluorescence quenching (qN) and effective quantum yield in PSII (ΦPSII) were studied in continuously illuminated wheat leaves of the upper tier. Regular changes were revealed in both age dependence of qN at elevated AL intensities and light curves of qN. These changes are related to alterations in strategies of redistribution and use of absorbed light energy by the photosynthetic apparatus at different stages of wheat leaf development. Unlike ΦPSII, qN as a parameter was more sensitive to the differences in the leaf age at a certain range of light intensities. At the same time, the stability of qN at moderate light intensities may serve as an indication of leaf maturity., T. V. Nesterenko, V. N. Shikhov, A. A. Tikhomirov., and Obsahuje seznam literatury
Different light filters affect leaf photosynthetic features and fruit quality. Consequently, selecting the appropriate covering filter for rain-shelter cultivation of peaches is a key part of successful production. We used a late-maturing peach variety ‘Xiahui 8’ to study differences in leaf photosynthetic features, chlorophyll fluorescence characteristics, and fruit quality under neutral, red, yellow, green, and blue filter, with natural light as control. The results showed that the leaf photosynthetic ability and internal quality under the neutral filter treatment were elevated compared with the control, and the appearance color was the same as the control. Leaves under neutral filter could maintain higher photosynthetic ability than other filter treatments. In addition, the fruits could also keep higher quality when treated with neutral filter. Therefore, the application of neutral filter in rain-shelter cultivation of ‘Xinhui 8’ peaches is recommended for maintaining high photosynthetic capacity and for improving fruit quality., B.-B. Zhang, J.-L. Xu, M. Zhou, D.-H. Yan, R.-J. Ma., and Obsahuje bibliografii