This study compared the relationship between chlorophyll (Chl) content, gas exchange, Chl fluorescence characteristics, and leaf color, using paired near-isogenic lines (NILs) of a medium-green leaf inbred line SN12 and a yellow-green leaf mutant SN62 to explore the photosynthesis of the yellow-green mutant. The SN62 was found in a female parent, Xianyu 335, which grew normally, although there were small yellow spots on the leaves at the seedling stage and yellow-green leaves appeared from the seedling to the maturation stage. The results indicated that Chl a (b), quantum efficiency of PSII, and maximal quantum yield of PSII photochemistry of SN62 were significantly lower than those of SN12, but there were almost no differences in the net photosynthetic rate (P N). There was no significant correlation between Chl a (b) and P N of inbred lines with different leaf colors. In the reproductive stage, photochemical quenching, effective quantum yield of PSII photochemistry, and the electron transport rate of SN62 increased obviously, and all parameter values exceeded the values of SN12. It explained that increasing the openness of the PSII reaction center was able to compensate for the lower Chl content, which was beneficial for harvesting more light energy for photochemical reactions. It also ensured that P N was not reduced., X. M. Zhong, S. F. Sun, F. H. Li, J. Wang, Z. S. Shi., and Obsahuje seznam literatury
Physiological responses from sensitive (S156) and resistant (R123) genotypes of ozone bioindicator, snap bean, were investigated after exposing the plants to cumulative, phytotoxic ozone amounts. Daily course of gas-exchange parameters showed delayed stomatal response in S156 leaves to environmental changes comparing to the response of R123 leaves. Potential photosynthetic quantum conversion, Stern-Volmer nonphotochemical quenching (NPQ), and maximum photochemical efficiency of PSII (Fv/Fm) values changed differently in the two genotypes between the first and last measuring days. We concluded that the higher ozone sensitivity originated at least partly from inferior regenerating and/or antioxidant capacity. Experimental protocol proved to be determinant on chlorophyll fluorescence parameters: Fv/Fm and NPQ declined at midday, and only the sensitive leaves showed a slight increase in NPQ between 12 h and 16 h. We explained these results by moderately high temperatures and shade-adapted state of our experimental plants under substantial ozone stress. On the base of temperature dependence of minimal fluorescence yield (F0), critical temperature proved to be higher than 32.7°C for Phaseolus vulgaris under these conditions. We found a strong linear correlation between NPQ and nonphotochemical quenching of F0, indicating that NPQ was determined mostly by energy-dependent quenching (qE). The qE is the light-harvesting complex located component of NPQ and depends on the amount of zeaxanthin molecules bound in PSII proteins. Thus, difference between daily courses of NPQ in the two genotypes was probably due to different ways of utilization of the zeaxanthin pool under the interactive effect of ozone and moderate heat stress., V. Villányi, Z. Ürmös, B. Turk, F. Batič, Z. Csintalan., and Obsahuje bibliografii
Predicting the effects of increased ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion on temperate desert ecosystems requires better knowledge of the ecophysiological response of common moss species. The aim of the current work was to determine whether elevated UV-B radiation affected photosynthetic performance and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. In laboratory experiments, Bryum argenteum and Didymodon vinealis, which show microdistributions and are dominant in soil crusts at the Tengger Desert, Northern China, were subjected to four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. The results showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), pigment contents, soluble protein contents, and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results indicated that B. argenteum was probably more sensitive to supplementary UV-B radiation than D. vinealis. Therefore, we propose the use of B. argenteum crusts as a bioindicator of responses to elevated UV-B radiation., R. Hui, X. R. Li, R. L. Jia, L. C. Liu, R. M. Zhao, X. Zhao, Y. P. Wei., and Obsahuje bibliografii
Monitoring some parameters would help to overcome the difficulties that can affect in vitro-grown plants during the crucial step of their acclimatization. Thus, after the determination of net photosynthesis and other parameters during acclimatization of in vitro-grown olive plantlets, we concluded that three months after the transfer to ex vitro, the in vitro-grown olive plants become well acclimated. In fact, even though the net photosynthesis, relatively high in vitro, recorded low values after 15 d from the transfer, it reverted back to its standard rates after 180 d of acclimatization. Transpiration and stomatal conductance first increased significantly with a maximum of 6.22 mmol(H2O) m-2 s-1 and 1.8 mmol(H2O) m-2 s-1, respectively, but they regressed to very low values after 180 d of acclimatization. Some changes in the leaf anatomy were also observed; the reduction of stomata density and inversely, the increase of trichome density, especially on the abaxial side of the leaves, were observed., A. Chaari-Rkhis, M. Maalej, A. Chelli-Chaabouni, L. Fki, N. Drira., and Obsahuje seznam literatury
Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants., M. Ashraf, P. J. C. Harris., and Obsahuje bibliografii
Glyphosate herbicide caused oxidative stress and exhibited negative effects on photosynthesis and gas exchange of peanut [Arachis hypogaea L. cv. Giza (G) 5 and 6] leaves. We demonstrated that glyphosate caused various morphological symptoms, such as chlorosis, yellowing, and appearance of curly edges in leaves treated with high doses of herbicide in both cultivars; however, the G5 cultivar was more sensitive and showed severer symptoms. Glyphosate lowered photosynthesis and reduced contents of pigments and proteins as well as free amino acids in both cultivars. The gas-exchange parameters, such as photosynthetic (P N) and transpiration rate (E), were highly altered by the glyphosate application. For example, P N and E were reduced by 65 and 61%, respectively, in G5 treated with high dose of glyphosate compared with control. Antioxidant enzymes, such as peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase were induced by both low and high concentrations in the glyphosate-treated leaves. Moreover, the level of lipid peroxidation, indicated by a malondialdehyde content, as well as the hydrogen peroxide content increased in the glyphosate-treated leaves. However, an increase in total antioxidant activity was detected in leaves and this reflected changes in the antioxidant status and accumulation of antioxidants as a defense mechanism against glyphosate toxicity in peanut., D. E. M. Radwan , K. A. Fayez., and Obsahuje seznam literatury
Sunflowers were treated with mixing proportions of NaCl, Na2SO4, NaHCO3, and Na2CO3. Effects of salt and saltalkaline mixed stress on growth, photosynthesis, chlorophyll fluorescence, and contents of inorganic ions and organic acids of sunflower were compared. The growth of sunflower decreased with increasing salinity. The contents of photosynthetic pigments did not decrease under salt stress, but their contents decreased sharply under
salt-alkaline mixed stress. Net photosynthetic rates, stomatal conductance and intercellular CO2 concentration decreased obviously, with greater reductions under salt-alkaline mixed stress than under salt one. Fluorescence parameters showed no significant differences under salt stress. However, maximal efficiency of PSII photochemistry, photochemical quenching coefficient, electron transport rate, and actual PSII efficiency significantly decreased but non-photochemical quenching increased substantially under salt-alkaline mixed stress. Under salt-alkaline mixed stress, sunflower leaves maintained a low Na+- and high K+ status; this may be an important feature of sunflower tolerance to salinity. Analysis of the mechanism of ion balance showed that K+ but not Na+ was the main inorganic cation in sunflower leaves. Our results indicated that the change in organic acid content was opposite to the change of Cl-, and the contribution of organic acid to total charge in sunflower leaves under both stresses decreased with increasing salinity. This may be a special adaptive response to stresses for sunflower. Sunflower under stress conditions mainly accumulated inorganic ions instead of synthesizing organic compounds to decrease cell water potential in order to save energy consumption. and J. Liu, D.-C. Shi.
Alkalies are important agricultural contaminants complexly affecting plant metabolism. In this study, rice seedlings were subjected to alkaline stress (NaHCO3:Na2CO3 = 9:1; pH 8.9) for 30 days. The results showed that stress mightily reduced net photosynthetic rate (PN), but slightly decreased transpiration rate and stomatal conductance. This indicated that decline of PN might be a result of nonstomatal factors. Alkaline stress caused a large accumulation of Na+ in leaves up to toxic concentration, which possibly affected chloroplast ultrastructure and photosynthesis. We found that alkaline stress reduced chlorophyll fluorescence parameters, such as ratios of Fv′/Fm′, Fv/Fm, photosystem (PS) II efficiency, and electron transport rates in rice plants, i.e. it influenced the efficiencies of photon capture and electron transport by PSII. This might be a main reason for the decrease of PN under such conditions. Deficiency of minerals could be another reason for the decline of PN. Alkaline stress lowered contents of N, K, Cu, Zn, P, and Fe in rice plants. In addition, the stress strongly affected metabolism of amino acids. This might be caused by imbalance in carbon metabolism as a result of photosynthesis reduction., Z.-H. Wu, C.-W. Yang, M.-Y. Yang., and Obsahuje bibliografii
To analyze acclimation of Euterpe edulis seedlings to changes in light availability, we transferred three-year-old seedlings cultivated for six months under natural shade understory [= 1.3 mol(photon) m-2 d-1] to a forest gap [= 25.0 mol(photon) m-2 d-1]. After the transfer, changes in chlorophyll fluorescence and leaf gas-exchange parameters, as well as in the light-response curves of photosynthesis and photosynthetic induction parameters, were analyzed during the following 110 days. Simultaneously measured photosynthetic characteristics in the shaded seedlings grown in understory served as the control. Despite the fact that the understory seedlings were under suboptimal conditions to achieve their light-saturated net photosynthetic rate (PNmax), light-response curves and photosynthetic induction parameters indicated that the species had the low respiration rate and a fast opening of stomata in response to the intermittent occurrence of sunflecks, which exerted a feed-forward stimulation on PNmax. Sudden exposure to high light induced photoinhibition during the first week after the transfer of seedlings to gap, as it was shown by the abrupt decline of the maximal quantum yield of PSII photochemistry (Fv/Fm). The photoinhibition showed the time-dependent dynamics, as the Fv/Fm of the seedlings transferred to the forest gap recovered completely after 110 days. Furthermore, the net photosynthetic rate increased 3.5-fold in relation to priorexposure values. In summary, these data indicated that more than 21 days was required for the shade-acclimated seedlings to recover from photoinhibition and to relax induction photosynthetic limitations following the sudden exposure to high light. Moreover, the species responded very quickly to light availability; it highlights the importance of sunflecks to understory seedlings., A. O. Lavinsky, F. P. Gomes, M. S. Mielke, S. França., and Obsahuje bibliografii
Our study examined the relationship between photosynthetic performance and activities of key photosynthetic enzymes to understand the photosynthetic variation and reasons for the variation during dormancy induction under different photoperiods in peach (Prunus persica L. cv. Chunjie). Furthermore, the study explained the changes in the key enzymes from the viewpoint of differential proteomics. The results showed that the leaf net photosynthetic rate (PN) and stomatal conductance tended to decrease, while the intercellular CO2 concentration rose, which indicated that the reduced PN resulted from nonstomatal limitation. During the dormancy induction period, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) declined, which was the main reason for the reduced PN. Two-dimensional electrophoresis maps and differential protein identification demonstrated that the decrease in activity of the photosynthetic enzymes was mainly due to enzymatic degradation. The enzyme degradation by a long-day treatment occurred later and to a lesser degree than that of the short-day treatment. In the long-day treatment, the carboxylation activity of Rubisco was higher than that of the control treatment, and the PEPC activity and the ratio of the PEPC/Rubisco activity were lower than the corresponding activities during the control treatment. These differences under long-day conditions were significant but did not occur in the short-day treatment, suggesting that the C4 pathway might be more active under short-day conditions., H.-S. Zhang, D.-M. Li, Q.-P. Tan, H.-Y. Gao, D.-S. Gao., and Obsahuje bibliografii