In this study, we investigated maximal quantum yield of PSII photochemistry(Fv/Fm),effective quantum yield of PSII photochemistry (ΦPSII), and nonphotochemical quenching (NPQ) of walnut (Juglans regia ‘Xinxin2’) leaves with different leaf-to-fruit ratios (LFRs). The results indicated that the increasing LFR increased the values of Fv/Fm, ΦPSII, and NPQ in leaves on the girdled shoot with one and two leaves, and decreased the values of Fv/Fm and ΦPSII in leaves on the girdled shoot with five leaves, whereas had no effect on the chlorophyll (Chl) fluorescence in leaves on the girdled shoot with three and four leaves. These results indicate that the effects of LFR on Chl fluorescence depend on a LFR range and show a transitional trend transition, and that excessive fruit load accelerates leaf senescence resulting in the destruction of the reaction center in PSII., C. F. Zhang, C. D. Pan, H. Chen., and Obsahuje bibliografii
Leukaemia inhibitory factor (LIF) has a wide variety of biological activities. While recent studies have focused on the role of LIF in osteoblast differentiation, the exact role of LIFR during the early stage of osteogenic differentiation remains unclear. We observed that LIFR expression gradually decreased during the early stage of osteogenic differentiation of hMSCs. To evaluate how LIFR
regulates osteogenic differentiation in greater depth, we transfected hMSCs with LIFR overexpression and siRNA lentiviral plasmids. Cells were divided into four groups:a negative overexpression control group, a LIFR overexpression group, a negative siRNA control group, and a LIFR siRNA group. On different days (0, 3, and 6) of the osteogenic differentiation of hMSCs, alkaline phosphatase (ALP) activity was assayed with an ALP staining and activity assay kit. Cells were harvested to assess the mRNA and protein expression of LIF, LIFR, and osteogenesis-related factors (ALP; RUNX2; osteonectin) by qRT-PCR and western blot analyses, respectively. In addition, culture supernatants were tested for the LIF content by ELISA. Our results showed that overexpression of LIFR significantly suppressed the osteoblast differentiation of hMSCs. In contrast, LIFR siRNA markedly improved this osteoblast differentiation as determined by ALP staining and activity measurements. Moreover, RUNX2, ALP, and ONN expre-sion was also significantly changed by altering LIFR expression. We further analysed the expression of LIF and LIFR, revealing consistent LIF and LIFR trends during the osteogenic differentiation of hMSCs. Together, these results suggested that LIFR may be a novel negative regulator during the early stage of hMSC osteogenic differentiation. and Corresponding authors: Tao Wang, Meirong Zheng, Weidong Li
Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m-2 s-1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (Pmax) expressed per biomass unit at 10 μmol(photon) m-2 s-1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of Pmax expressed per Chl unit at 145 μmol(photon) m-2 s-1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, Pmax) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII., S. Jodłowska, S. Śliwińska., and Obsahuje bibliografii
In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (PN), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in PN occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum PN compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse., L. Y. Yang, L. T. Wang, J. H. Ma, E. D. Ma, J. Y. Li, M. Gong., and Obsahuje bibliografii
The acclimation to high light, elevated temperature, and combination of both factors was evaluated in tomato (Solanum lycopersicum cv. M82) by determination of photochemical activities of PSI and PSII and by analyzing 77 K fluorescence of isolated thylakoid membranes. Developed plants were exposed for six days to different combinations of temperature and light intensity followed by five days of a recovery period. Photochemical activities of both photosystems showed different sensitivity towards the heat treatment in dependence on light intensity. Elevated temperature exhibited more negative impact on PSII activity, while PSI was slightly stimulated. Analysis of 77 K fluorescence emission and excitation spectra showed alterations in the energy distribution between both photosystems indicating alterations in light-harvesting complexes. Light intensity affected the antenna complexes of both photosystems stronger than temperature. Our results demonstrated that simultaneous action of high-light intensity and high temperature promoted the acclimation of tomato plants regarding the activity of both photosystems in thylakoid membranes., A. Faik, A. V. Popova, M. Velitchkova., and Obsahuje bibliografii
Based on a 20-year fertilization experiment with wheat-maize double cropping system, the effects of different long-term fertilization treatments on leaf photosynthetic characteristics and grain yield in different winter wheat (Triticum aestivum L.) cultivars were studied in the growing seasons of 2000-2001 and 2001-2002. A total of nine fertilization treatments were implemented, i.e. no fertilizer (CK), N fertilizer (N), N and P fertilizers (NP), N and K fertilizers (NK), N, P, and K fertilizers (NPK), only organic manure (M), organic manure and N fertilizer (MN), organic manure and N and P fertilizers (MNP), and organic manure and N, P, and K fertilizers (MNPK). With the treatments of combined organic manure and inorganic fertilizers (TMI), net photosynthetic rate (PN), maximal activity of photosystem 2, PS2 (Fv/Fm), and chlorophyll content (SPAD value) of flag leaves and leaf area index (LAI) were much higher at the mid grain filling stage (20 or 23 d post anthesis, DPA), and exhibited slower declines at the late grain filling stage (30 DPA), compared with the treatments of only inorganic fertilizers (TI). The maximal canopy photosynthetic traits expressed as PN×LAI and SPAD×LAI at the mid grain filling stage were also higher in TMI than those in TI, which resulted in different grain yields in TMI and TI. Among the treatments of TMI or among the treatments of TI, both flag leaf and canopy photosynthetic abilities and yield levels increased with the supplement of inorganic nutrients (N, P, and K fertilizers), except for the treatment of NK. Under NK, soil contents of N and K increased while that of P decreased. Hence the unbalanced nutrients in soil from the improper input of nutrients in NK treatment were probably responsible for the reduced flag leaf and canopy photosynthetic characteristics and LAI, and for the fast declining of flag leaf photosynthetic traits during grain filling, resulting in the reduced yield of NK similar to the level of CK. and D. Jiang ... [et al.].
Three-years-old trees of Satsuma mandarin (Citrus unshiu [Mak.] Marc.) cv. Okitsu were exposed to O3 fumigation during long term (one year) in open-top chambers. As a result of the treatment, chlorophyll a fluorescence and gas exchange parameters were modified with respect to trees growing in O3-free conditions. Net photosynthetic rate and stomatal conductance decreased and intercellular CO2 concentration increased according to a reduction of the non-cyclic electron flow and a lower capacity to reduce the quinone pool. O3 also reduced the development of non-photochemical quenching preventing the dissipation of excess excitation energy and, therefore, generated several alterations in photosynthetic apparatus. All these effects were obtained in long-term exposure and higher O3 concentration. In O3 ambient conditions, the effects were minor. and A. Calatayud ... [et al.].
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m-2 s-1] and low irradiation [LI, 100 μmol(photon) m-2 s-1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (P max), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of P max, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage., Z. Q. Yang, C. H. Yuan, W. Han, Y. X. Li, F. Xiao., and Obsahuje seznam literatury
Pepper is a thermophilous and heliophilic vegetable. In China, pepper is grown in greenhouse during winter and spring under lower temperature and irradiation. In this study, we investigated the effects of low temperature and low irradiance (LTLI) on the physiological characteristics and the expression of related genes in five pepper species, Capsicum annuum L. (CA), C. baccatum L. (CB), C. chinense Jacquin (CC), C. frutescens L. (CF), and C. pubescens Ruiz & Pavon (CP) in order to screen for greenhouse species that is resistant to such adverse conditions. We observed significant reductions not only in photosynthetic pigments and stomatal conductance but also in proline, total soluble sugar, enzyme activity, and root activity; disordered arrangements of leaf palisade and spongy tissues; and first rising and then falling expression of C-repeat binding factor (CBF3) and cold-regulated genes (CORc410). These results indicate that pepper is not resistant to LTLI. We also found that CP showed significantly higher photosynthetic activity, more proline and total soluble sugar, higher enzyme activity, higher root activity, higher CBF3 and CORc410 expression levels, more tightly packed leaf palisade and spongy tissues, and thicker bundle sheath than the other four species did under LTLI, while CF exhibited the lowest values for these indicators. It demonstrated significant differences in the ability to resist to LTLI among different species, with CP showing the strongest resistance, followed by CB. Therefore, we recommend the introduction of CP and CB to greenhouse cultivation to further screen for low temperature and low light-resistant pepper varieties to increase pepper production by strengthening intervariety hybridization., L. J. Ou, G. Wei, Z.Q. Zhang, X. Z. Dai, X. X. Zou., and Obsahuje bibliografii
The aim of this study was to assess carotid baroreflex responses during graded lower body negative pressure (LBNP). In 12 healthy subjects (age 29±4 years) we applied sinusoidal neck suction (0 to -30 mmHg) at 0.1 Hz to examine the sympathetic modulation of the heart and blood vessels and at 0.2 Hz to assess the effect of parasympathetic stimulation on the heart. Responses to neck suction were determined as the change in spectral power of RR-interval and blood pressure from baseline values. Measurements were carried out during progressive applications (0 to -50 mmHg) of LBNP. Responses to 0.1 and 0.2 Hz carotid baroreceptor stimulations during low levels of LBNP (-10 mmHg) were not significantly different from those measured during baseline. At higher levels of LBNP, blood pressure responses to 0.1 Hz neck suction were significantly enhanced, but with no significant change in the RR-interval response. LBNP at all levels had no effect on the RR-interval response to 0.2 Hz neck suction. The unchanged responses of RR-interval and blood pressure to neck suction during low level LBNP at -10 mmHg suggest no effect of cardiopulmonary receptor unloading on the carotid arterial baroreflex, since this LBNP level is considered to stimulate cardiopulmonary but not arterial baroreflexes. Enhanced blood pressure responses to neck suction during higher levels of LBNP are not necessarily the result of a reflex interaction but may serve to protect the circulation from fluctuations in blood pressure while standing., C. M. Brown, M. J. Hecht, B. Neundörfer, M. J. Hilz., and Obsahuje bibliografii