Plán předsedy Evropské komise Jeana-Claude Junckera, jak mobilizovat a podpořit investice v Evropě (tzv. Junckerův investiční plán), dostal konkrétní obrysy již na sklonku roku 2014, kdy Evropská rada schválila jeho podobu, a podpořila tak vznik Evropského fondu pro strategické investice (EFSI). Investiční plán má za cíl pozvednout veřejné i soukromé investice do evropské ekonomiky, a to ve výši minimálně 315 miliard eur na období 2015-2017. and Kateřina Slavíková.
Archivy sociálních dat mají specifický význam jako infrastruktura pro mezinárodní komparativní výzkum. V této oblasti slouží nejen jako zdroj dat, ale podílejí se i na organizaci mezinárodních šetření a zapojují se do výzkumu v oblasti harmonizace dat a vývoje standardizovaných indikátorů. Od počátku archivace dat v Evropě se proto uvažuje o budování společného evropského systému datových služeb. Řada stávajících národních archivů je sdružena v organizaci CESSDA. Jejich spolupráce zahrnuje dohodu o mezinárodní výměně dat, k reálnému propojení datových služeb ale dosud nedošlo. Problémem je vzájemná nekompatibilita stávajících systémů datových služeb, informací o datech i obecná nekompatibilita produkce v sociálněvědním výzkumu. Dosud bylo dosaženo dílčích úspěchů v překonání bariér, zejm. bylo vyvinuto uspokojivé softwarové a hardwarové řešení pro propojení datových služeb (NESSTAR), dochází k standardizaci metadat (DDI), vyvíjen je multilinguální thesaurus ELSST a došlo k částečnému propojení několika datových knihoven ve společném katalogu C-CAT. Vytvoření evropského systému datových služeb je připravováno v projektu CESSDA-PPP. Není však jisté, zda budou získány prostředky na jeho realizaci., Jindřich Krejčí., and Obsahuje bibliografii
Exchange rate forecasting is an important and challenging task for both academic researchers and business practitioners. Several statistical or artificial intelligence approaches have been applied to forecasting exchange rate. The recent trend to improve the prediction accuracy is to combine individual forecasts in the form of the simple average or weighted average where the weight reflects the inverse of the prediction error. This kind of combination, however, does not reflect the current prediction error more than the relatively old performance. In this paper, we propose a new approach where the forecasting results of GARCH and neural networks are combined based on the weight reflecting the inverse of EWMA of the mean absolute percentage error (MAPE) of each individual prediction model. Empirical study results indicate that the proposed combining method has better accuracy than GARCH, neural networks, and traditional combining methods that utilize the MAPE for the weight.
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-water hydrology, are scattered across the literature, and not always well known. In this two-part series we provide a discussion of the advection-dispersion equation and related models for predicting concentration distributions as a function of time and distance, and compile in one place a large number of analytical solutions. In the current part 1 we present a series of one- and multi-dimensional solutions of the standard equilibrium advection-dispersion equation with and without terms accounting for zero-order production and first-order decay. The solutions may prove useful for simplified analyses of contaminant transport in surface water, and for mathematical verification of more comprehensive numerical transport models. Part 2 provides solutions for advective-dispersive transport with mass exchange into dead zones, diffusion in hyporheic zones, and consecutive decay chain reactions.
Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.
We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega)$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m}< \alpha < \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three-dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].
In response to the scholar debate regarding the way in which Great Moravian spherical buttons were used, this study presents an overview of specimens whose use may be inferred on the basis of the archaeological context. The topic is demonstrated using two case studies, where the function of the spherical buttons may be definitively proved thanks to preserved textile fibres. Textile and metal material characterization was performed by EDS analysis on SEM. The case studies are accompanied by analogous finds known from the literature. In conclusion, we propose possible interpretations of the functional range of spherical hollow buttons.
This paper describes the dynamic modeling of nonholonomic system for control purposes. The equations of motion together with nonholonomic constraint are reduced into system of five 1st order equations. Further, the exact linearization is performed and finally we obtain a decoupled system of two independent integrator chains. Next we describe the controller design, and at the end, the simualtion results are presented. and Obsahuje seznam literatury