This article deals with numerical modelling of contaminant transport in a locality near Bzenec. From the 1970s to the 1990s, this locality was subjected to groundwater contamination by chlorohydrocarbons (PCE, TCE, DCE). The locality is known for its drinking water supplies, which serve for over 100 000 people. Since 1992 remediation of the locality has been in progress, with several breaks due to funding problems. Numerical modelling was used as a method for assessing the efficiency of remediation and for predicting the contaminant transport until the end of 2006. In order to model contaminant transport, a 3D groundwater flow model was first created, calibrated and verified in steady state. Then the transport model was built to simulate contaminant transport. The modelling of contaminant transport was solved by using several scenarios where the input values for the dispersion, sorption and decay parameters were verified using measured values of contaminant concentration in the region of interest. and Článek se zabývá numerickým modelováním šíření znečištění v blízkosti Bzence. V průběhu 70. až 90. let minulého století došlo v této lokalitě ke kontaminaci podzemní vody chlorovanými uhlovodíky (PCE, TCE, DCE). Tato lokalita je významným zdrojem pitné vody pro více než 100 000 obyvatel. Od roku 1992 probíhájí v lokalitě sanační práce, které byly z finančních důvodů několikrát přerušeny. Pro ověření účinnosti sanačních prací a pro predikci šíření znečištění do konce roku 2006 byla využita metoda numerického modelování. Aby bylo možné simulovat proces šíření znečištění, byl nejprve sestaven, zkalibrován a verifikován třírozměrný model proudění podzemní vody pro ustálený stav. Potom byl vytvořen transportní model. Transport kontaminantu byl modelován v několika scénářích, lišících se hodnotami parametrů disperze, sorpce a rozpadové konstanty. Hodnoty těchto parametrů byly verifikovány pomocí měřených koncentrací znečišťujících látek v oblasti.
Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful analytical solutions originated in disciplines other than surface-water hydrology, are scattered across the literature, and not always well known. In this two-part series we provide a discussion of the advection-dispersion equation and related models for predicting concentration distributions as a function of time and distance, and compile in one place a large number of analytical solutions. In the current part 1 we present a series of one- and multi-dimensional solutions of the standard equilibrium advection-dispersion equation with and without terms accounting for zero-order production and first-order decay. The solutions may prove useful for simplified analyses of contaminant transport in surface water, and for mathematical verification of more comprehensive numerical transport models. Part 2 provides solutions for advective-dispersive transport with mass exchange into dead zones, diffusion in hyporheic zones, and consecutive decay chain reactions.
Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.
During 30-40 years of the tailing existence large amounts of heavy metals were leached from the sludge and accumulated in the clay bottom. Low permeability of the clayey bottom below the sludge deposit indicates that vertical contaminant transport will take place as result of diffusion. Diffusion as physical process is described by Fickian empirical relation that can be used for prediction of the contaminant transport development at time. The paper presents model solution applied with an example of the vertical transport of two heavy metals - lead and zinc - in natural clay base of Lintich sludge deposit. Results confirm that diffusion is very slow process from time-scale aspect, but diffusive flux of heavy metals after reaching steady state is quite large. and Počas 30-40 ročnej existencie odkaliska Banská Štiavnica - Lintich sa z ''kalu'' vylúhovali veľké množstvá ťažkých kovov a následne sa akumulovali v ílovom podloží. Nízka priepustnosť ílového podložia pod odkaliskom indikuje, že dominantným transportným mechanizmom bude difúzia. Difúziu ako fyzikálny proces možno opísať pomocou Fickovho empirického vzťahu, ktorý sa dá použiť na posúdenie vývoja migrácie kontaminantov v čase. V príspevku bolo modelované riešenie použité na príklade vertikálneho transportu dvojice ťažkých kovov - olova a zinku - v prirodzenom ílovom podloží odkaliska Lintich. Výsledky potvrdzujú, že z časového hľadiska je difúzia pomalý proces, avšak difúzny tok ťažkých kovov po dosiahnutí času ''prieniku'' ílovej bariery je značne veľký.