Ten polymorphic microsatellite loci were developed for the butterfly Erebia palarica (Nymphalidae, Satyrinae), endemic to NW Spain. Polymorphism for 20 individuals from a NW Spanish population (Ancares) and 15 more from two other nearby localities (Courel, Trevinca) was assessed. Overall, the number of alleles per locus ranged from six to 24. Ancares showed an average number of alleles per locus of 14.30 (SD = 5.32), observed heterozygosity of 0.753 (SD = 0.14) and unbiased expected heterozygosity of 0.818 (SD = 0.114). Genotypic frequencies conformed to the Hardy-Weinberg equilibrium at Ancares, and there was no evidence of linkage disequilibrium. Multilocus genotypes resulting from this set of markers will be useful for determining genetic diversity and differentiation within and among populations of this local endemic butterfly in NW Spain. Of the six loci amplified in the closely related species, Erebia meolans, five were polymorphic.
The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was sequenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. The nucleotide composition of the genome is greatly A+T biased (81.09%), with a negative AT skewness (-0.007), indicating the presence of fewer As than Ts, similar to other Noctuoidea. The A+T-rich region is 343 bp long, and contains some conserved regions, including an "ATAGA" motif followed by a 19 bp poly-T stretch, a microsatellite-like (AT)9 and a poly-A element, a characteristic shared with other lepidopteran mitogenomes. Phylogenetic analysis, based on 13 PCGs using Maximum likelihood methods revealed that S. robusta belongs to the superfamily Noctuoidea., Yu Sun, Sen Tian, Cen Qian, Yu-Xuan Sun, Muhammad N. Abbas, Saima Kausar, Lei Wang, Guoqing Wei, Bao-Jian Zhu, Chao-Liang Liu., and Obsahuje bibliografii
Historical data sources on abundance of organisms are valuable for determining responses of those organisms to climate change and coincidence of changes amongst different organisms. We investigate data on the general abundance of Lepidoptera over an 89 year period 1864-1952. We related abundance to monthly mean temperature and precipitation and the winter North Atlantic Oscillation (NAO) index, and to numbers of migrants from an independent source. Abundances of Lepidoptera were significantly positively correlated with current year temperatures for May to September and November and significantly negatively correlated with temperatures in January. Numbers were also negatively correlated with rainfall for April and May and annual total of the current year and with August in the previous year. Abundance of Lepidoptera decreased significantly with an increasing winter NAO index. Increased overall abundance in Lepidoptera coincided significantly with increased numbers of migrants. The climate associations were very similar to those previously reported for butterfly data collected by the British Butterfly Monitoring Scheme; although warm and drier summers were generally beneficial to Lepidoptera populations, wet summers and winters and mild winters were not. We discuss the implications for Lepidoptera biology and populations in regions of Britain in the face of projected climate changes.
Recently a large number of studies have reported an increase in the variability in the climate, which affects behavioural and physiological adaptations in a broad range of organisms. Specifically, insects may be especially sensitive to climatic fluctuations, as their physiology and life history traits, like those of other ectotherms, are predominantly affected by environmental factors. Here we aimed to investigate climate-induced changes in several morphometric measures of the Heath Fritillary in North-Eastern Hungary, which is a highly diverse transitional area. During this study we tested the following hypotheses: (i) climate affects genitalia and body size to various degrees (ii) increasing variability in climate induces higher levels of fluctuating asymmetry and variance in all morphological characters. To our knowledge, this study is the first to analyse simultaneously wing size and structure of genitalia of a butterfly in response to variability in climate. Our findings suggest that wing and genital traits may exhibit similar degrees of stability in response to a more variable climate, although the response in terms of forewing size differs from that of other body measurements and the structure of the genitalia. These findings suggest that global climate change may affect lepidopteran body metrics over longer periods of time. Our findings parallel the results of investigations showing that insect morphology might be modified by environmental changes, which is especially the case for those body parts that are phenotypically very variable. However, we found no evidence that increasing variability in climate would induce higher levels of fluctuating asymmetry and greater variability in morphological characters., Edit Juhász, Zsolt Végvári, János P. Tóth, Katalin Pecsenye, Zoltán Varga., and Obsahuje bibliografii
In herbivorous insects, differences in the degree of specialization to host plants emerge when the distribution of an herbivore differs from that of its host plants, which results in a mosaic of populations differing in performance on the different host plants. Using a specialized butterfly, Battus polydamas archidamas Boisduval, 1936, which feeds exclusively on the genus Aristolochia, we test whether host plant co-occurrence and associated differences in host quality modify local adaptation in terms of larval preference and performance. We compared individuals from a monospecific host stand of Aristolochia chilensis with those from a mixed host stand of A. chilensis and A. bridgesii. Individuals were reared in a reciprocal transfer experiment in which source population and the host species fed to larvae were fully crossed in a two-by-two factorial experiment in order to quantify their preference, performance (development time, size and growth rate) and survival. Individuals from both populations preferred the species they ate during their larval development over the other host, which indicates host plant-induced preference with non-adaptive implications. Larvae from mixed and monospecific stands grew faster and survived better when reared on A. bridgesii than A. chilensis. Larvae from a monospecific host stand grew slower and fewer individuals survived under the same local conditions, which is contrary to expectations. Therefore, rearing the butterfly on A. bridgesii consistently resulted in better performance, which indicates that the monospecific population is less well adapted to its host than the mixed population. Variation in the occurrence of the two host plants in the two populations can result in divergent selection due to the variation in plant quality, which in this case could result in opposing adaptive processes., Rodrigo S. Rios, Cristian Salgado-Luarte, Gisela C. Stotz, Ernesto Gianoli., and Obsahuje bibliografii
The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
a1_Quantitative behavioural traits associated with egg-laying, such as the level of selectivity for host-supports and the size of egg clutches, are generally thought to be of great importance for the subsequent survival and development of offspring. These quantitative traits, however, are often difficult to assess reliably by direct observation in the field. This is particularly the case when the insects are very tiny, which is the case for most galling and leaf mining insects. However, a new approach, the "Melba" procedure, allows the indirect inference of these quantitative traits, using easily recorded field-data only. Application of this diagnostic procedure to a large series of samples of beech leaves (Fagus silvatica), harbouring either a leaf miner, Phyllonorycter maestingella (Lepidoptera: Gracillariidae) or one or the other of two galling insects, Mikiola fagi or Hartigiola annulipes (Diptera: Cecidomyiidae) indicates that the leaf miner differs significantly from the two species of galling insect in term of combined values of host-acceptance ratio and average clutch-size, while the two gall-inducing species remain substantially undistinguishable from each other according to these traits. Thus, the galling insects (i) show stronger selectivity for a host than does the miner at any given average clutch-size and (ii) show larger average clutch-size at any given level of selectivity. That is, for at least these three species, the galling insects show a greater level of selectivity when choosing leaves to oviposit on but, then, tend to lay larger egg-clutches. These differences may be due (i) to the gall-inducing process requiring far more of leaf tissues than being simply palatable, which makes it likely that galling species will be more selective in their choice of leaves than leaf miners and (ii) to the capacity of galls to become nutrient sinks, which may help explain why the galling insects laid larger, a2_egg clutches. However, whether these trends can be regarded as general rather specific to this particular case, depends on the outcome of future studies on other groups of insects with similar life histories., and Jean BÉGUINOT.
Responsiveness of Lepidoptera phenology to climate has been detected in a number of species during the current trend in global warming. There is still a question of whether climate signals would be evident in historical data. In this paper we examine the climatic response of 155 species of moths and butterflies collected during the period 1866-1884 in Wiltshire, southern England. In general, species responded to increased temperature in the previous October by delayed appearance and to increased temperature in the current spring by advanced appearance. Thus, differential changes in temperatures of the autumn and spring could well affect changes in the relative pattern of the phenology of species. Attributes influencing the species' ecology were examined to see if they influenced temperature responsiveness. In general, few consistent effects emerged, though responsiveness to climate was found to be greater for species eclosing later in the year, specifically to the previous autumn temperatures, and to hibernal environment, increasingly for species less exposed to air temperatures. These findings warn against expecting simple responses to climate warming.
The methylated H3 histone and heterochromatin protein 1 (HP1) are markers of heterochromatin in several eukaryotes possessing monocentric chromosomes. In order to confirm that these epigenetic markers of heterochromatin are evolutionary conserved, the distribution of methylated H3 histones and HP1 homologues on the holocentric chromosomes of the cabbage moth Mamestra brassicae (Lepidoptera) were studied. In particular, PCR experiments with degenerated primers identified a HP1 homologue (called MbHP1) in the M. brassicae genome. Sequencing showed that the MbHP1 gene is 737 bp long including a 102 bp 5'UTR and a 635 bp coding portion (comprising an 80 bp intron). The MbHP1 peptide consisted of 184 amino acids, had a 20 kDa molecular mass and a net negative charge. At the structural level, it showed an N terminal chromo-domain and a chromo-shadow-domain at the C terminus linked by a short hinge region. At the cytogenetic level, MbHP1 was located exclusively in the heterochromatic regions of the chromosomes. The same heterochromatic regions became labelled after immuno-staining with antibodies against H3 histone methylated at lysine 9, reinforcing the hypothesis that this modified histone is essential for HP1 binding. Our data, as a whole, confirm that heterochromatic components and markers are evolutionary conserved both in mono- and holocentric chromosomes despite the difference in the distribution of heterochromatin on chromosomes.
Daily rhythmicity in the sexual behaviour of Monema flavescens Walker (Lepidoptera: Limacodidae) was studied under laboratory conditions. There was a distinct diel periodicity in female calling, male responsiveness and mating behaviour of M. flavescens. As females aged there was an advance in the onset and more time spent calling. One day old females started calling 4 h after the onset of the scotophase, and 5 to 6 day old females called during the first hour of the scotophase. About 34.5% of females called on the night they emerged (1 day old) and the peak in calling of 97.8% was recorded for 2 day old females, after which the incidence of calling decreased rapidly with advancing age. Wind tunnel and copulation tests showed that males were sexually mature on the third night and female moths on the second night. The highest value for the percentage mating was recorded for 3 day old virgin females 4 to 6 h after the onset of the scotophase. In field tests, traps baited with 2 day and 3 day old virgin females captured more males than any other trap and most males were captured 4 to 6 h (1 to 2 day old), 3 to 5 h (3 to 4 day old) and 2 to 4 h (5 to 6 day old) after the onset of the scotophase. These results indicate that there is a daily rhythm in the reproductive behaviour of M. flavescens and provides a better understanding of its sexual behaviour.