Historical data sources on abundance of organisms are valuable for determining responses of those organisms to climate change and coincidence of changes amongst different organisms. We investigate data on the general abundance of Lepidoptera over an 89 year period 1864-1952. We related abundance to monthly mean temperature and precipitation and the winter North Atlantic Oscillation (NAO) index, and to numbers of migrants from an independent source. Abundances of Lepidoptera were significantly positively correlated with current year temperatures for May to September and November and significantly negatively correlated with temperatures in January. Numbers were also negatively correlated with rainfall for April and May and annual total of the current year and with August in the previous year. Abundance of Lepidoptera decreased significantly with an increasing winter NAO index. Increased overall abundance in Lepidoptera coincided significantly with increased numbers of migrants. The climate associations were very similar to those previously reported for butterfly data collected by the British Butterfly Monitoring Scheme; although warm and drier summers were generally beneficial to Lepidoptera populations, wet summers and winters and mild winters were not. We discuss the implications for Lepidoptera biology and populations in regions of Britain in the face of projected climate changes.
Responsiveness of Lepidoptera phenology to climate has been detected in a number of species during the current trend in global warming. There is still a question of whether climate signals would be evident in historical data. In this paper we examine the climatic response of 155 species of moths and butterflies collected during the period 1866-1884 in Wiltshire, southern England. In general, species responded to increased temperature in the previous October by delayed appearance and to increased temperature in the current spring by advanced appearance. Thus, differential changes in temperatures of the autumn and spring could well affect changes in the relative pattern of the phenology of species. Attributes influencing the species' ecology were examined to see if they influenced temperature responsiveness. In general, few consistent effects emerged, though responsiveness to climate was found to be greater for species eclosing later in the year, specifically to the previous autumn temperatures, and to hibernal environment, increasingly for species less exposed to air temperatures. These findings warn against expecting simple responses to climate warming.
The number of species of migratory Lepidoptera (moths and butterflies) reported each year at a site in the south of the UK has been rising steadily. This number is very strongly linked to rising temperatures in SW Europe. It is anticipated that further climate warming within Europe will increase the numbers of migratory Lepidoptera reaching the UK and the consequences of this invasion need urgent attention.
Which factors influence the occurrence, population size and density of species in fragmented habitat patches are key questions in population and conservation ecology. Metapopulation theory predicts that larger and less isolated habitat patches should positively influence species occurrence and population size. However, recent studies have shown that habitat quality, human activity and permeability of the landscape surrounding habitat patches may be also important. In this paper we test the relative effects of habitat patch characteristics, human settlement and landscape permeability on the occurrence, local population size and density of the Chalk-hill Blue Polyommatus coridon a charismatic butterfly inhabiting calcareous grasslands in a fragmented landscape in southern Poland. Patch occupancy rate (corrected for the butterfly detection probability) was 0.45. Habitat patch area, proximity of human settlement and cover of larval food plants positively affected occurrence of the Chalk-hill Blue. Local population size of the Chalk-hill Blue was positively affected by patch area and proximity of human settlement, and negatively by patch isolation. Local density was higher in patches located close to human settlement. Our study is one of the few showing a positive effect of human settlement on a grassland specialist butterfly although the mechanism hidden behind this phenomenon is unknown and requires further examination. In order to maintain local populations of the Chalk-hill Blue in southern Poland, conservation action should be focused on large, closely connected calcareous grasslands. Moreover, extensive management of this habitat should be maintained by local inhabitants who are better placed to undertake such work. and Zuzanna M. ROSIN, Piotr SKÓRKA, Magdalena LENDA, Dawid MORON, Tim H. SPARKS, Piotr TRYJANOWSKI.