Chlorophyll fluorescence has developed into a well-established noninvasive technique to study photosynthesis and by extension, the physiology of plants and algae. The versatility of the fluorescence analysis has been improved significantly due to advancements in the technology of light sources, detectors, and data handling. This allowed the development of an instrumention that is effective, easy to handle, and affordable. Several of these techniques rely on point measurements. However, the response of plants to environmental stresses is heterogeneous, both spatially and temporally. Beside the nonimaging systems, low- and high-resolution imaging systems have been developed and are in use as real-time, multi-channel fluorometers to investigate heterogeneous patterns of photosynthetic performance of leaves and algae. This review will revise in several paragraphs the current status of chlorophyll fluorescence imaging, in exploring photosynthetic features to evaluate the physiological response of plant organisms in different domains. In the conclusion paragraph, an attempt will be made to answer the question posed in the title., R. Valcke., and Obsahuje bibliografické odkazy
Carbonic anhydrase (CA) is a metalloenzyme that performs interconversion between CO2 and the bicarbonate ion (HCO3-). CAs appear among all taxonomic groups of three domains of life. Wide spreading of CAs in nature is explained by the fact that carbon, which is the major constituent of the enzyme’s substrates, is a key element of life on the Earth. Despite the diversity of CAs, they all carry out the same reaction of CO2/HCO3- interconversion. Thus, CA obviously represents a universal enzyme of the
carbon-based life. Within the classification of CAs, here we proposed the existence of an extensive family of CA-related proteins (γCA-RPs) - the inactive forms of γ-CAs, which are widespread among the Archaea, Bacteria, and, to a lesser extent, in Eukarya. This review focuses on the history of CAs discovery and integrates the most recent data on their classification, catalytic mechanisms, and physiological roles at various organisms., E. Kupriyanova, N. Pronina, D. Los., and Obsahuje bibliografii
Chloroplasts are commonly the site of the earliest abiotic injury visible in plant ultrastructure. In this study, six inbred lines of maize (Zea mays L.) were used to analyze changes in the ultrastructure of chloroplasts and related physiological parameters under conditions of drought stress simulated by 20% polyethylene glycol 6000 (-0.6 MPa) for two days. Chloroplasts of three maize lines proved to be more sensitive. They showed changes in the ultrastructure in response to drought, including damage of thylakoid membranes, an increase in the number and size of plastoglobuli, swelling of thylakoid membranes both stromal and granal, disorganization of the thylakoid membrane system, an obvious increase in the intrathylakoid space, and a decrease in the
length-to-width ratio and area of chloroplasts. In addition, the contents of malondialdehyde increased markedly in the sensitive lines. Contrary to the sensitive lines, stable structures and shapes of chloroplasts were observed in the drought-resistant lines; it could be considered as an advantage contributing to drought tolerance in the plants. In addition, the drought index of leaf fresh mass (LMDI) in the drought-sensitive lines was ≤ 0.5, which was also associated with a lower content of leaf chlorophyll. In contrast, drought tolerance coincided with lesser growth reduction, and higher LMDI and leaf chlorophyll content., R. X. Shao, L. F. Xin, H. F. Zheng, L. L. Li, W. L. Ran, J. Mao, Q. H. Yang., and Obsahuje seznam literatury
Over last decades, several studies have been focused on
short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m-2 s-1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30-40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment., K. Balarinová, M. Barták, J. Hazdrová, J. Hájek, J. Jílková., and Obsahuje bibliografii
The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate., N. Yan, Y.-L. Zhang, H.-M. Xue, X.-H. Zhang, Z.-D. Wang, L.-Y. Shi, D.-P. Guo., and Obsahuje seznam literatury
A comparison between maximum quantum yield of PSII photochemistry (Fv/Fm) and chlorophyll fluorescence decrease ratio (Rfd) for low and high temperature resistance was assessed in a seasonal study of the acclimation in Pterocephalus lasiospermus. Analyzing the regression adjustment of both parameters and the lethal temperatures (LT50), Rfd resulted in being a more sensitive indicator for low and high temperature treatments, since the thermic resistance estimated with Rfd parameter was never higher than those estimated with Fv/Fm. Furthermore, the use of Fv/Fm led to an overestimation of the acclimation phenomena, with 6ºC of a maximum difference between both parameters. Using Rfd as the indicator parameter, P. lasiospermus acclimated to low temperatures but it kept on being a sensitive species (the lowest LT50 values only achieved -9.9 ± 0.3ºC). However, no heat acclimation was observed (LT50 around 43.5ºC). Thus, according to Rfd evaluation of the thermic threshold, this species could be in risk of damage at low temperatures in this alpine ecosystem., A. V. Perera-Castro, P. Brito, A. M. González-Rodríguez., and Obsahuje bibliografii
Water availability is a major limiting factor in desert ecosystems. However, a winter snowfall role in the growth of biological soil crusts is still less investigated. Here, four snow treatments were designed to evaluate the effects of snow depth on photosynthesis and physiological characteristics of biological soil crusts. Results showed that snow strongly affected the chlorophyll fluorescence properties. The increased snow depth led to increased contents of photosynthetic pigments and soluble proteins. However, all biological soil crusts also exhibited a decline in malondialdehyde and soluble sugar contents as snow increased. Results demonstrated that different biological soil crusts exhibited different responses to snow depth treatment due to differences in their morphological characteristics and microhabitat. In addition, interspecies differentiation in response to snow depth treatment might affect the survival of some biological soil crusts. Further, this influence might lead to changes in the structural composition and functional communities of biological soil crusts., R. Hui, R. M. Zhao, L. C. Liu, Y. X. Li, H. T. Yang, Y. L. Wang, M. Xie, X. Q. Wang., and Obsahuje bibliografii
Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation range to 760 nm. In this study, PSI complexes were isolated and purified from H. hongdechloris, grown under white light (WL) and far-red light (FR), by a combination of density gradient ultracentrifugation and chromatographic separation. WL-PSI showed similar pigment composition as that of Synechocystis 6803, using Chl a in the reaction center. Both Chl a and f were detected in the FR-PSI, although Chl f was a minor component (~8% of total Chl). The
FR-PSI showed a maximal fluorescence emission peak of 750 nm at 77 K, which is red-shifted ~20 nm compared to the 730 nm recorded from the WL-PSI. The absorption peaks of P700 for WLPSI and FR-PSI were 699 nm and 702 nm, respectively. The function of Chl f in FR-PSI is discussed., Y. Li, N. Vella, M. Chen., and Obsahuje bibliografické odkazy
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures., S. Fonteyne, P. Lootens, H. Muylle, W. van den Ende, T. de Swaef, D. Reheul, I. Roldan-Ruiz., and Obsahuje seznam literatury
This work aimed to evaluate if chilling stress may be mitigated by elevated CO2 (EC) in Beta vulgaris L. plants. Photosynthetic rate was measured at 21% and 2% O2 after a short-term exposure of 5 h at four different treatments: 360 μmol(CO2) mol-1/25°C (AC); 360 μmol(CO2) mol-1/4°C (AC+LT); 700 μmol(CO2) mol-1/25°C (EC); 700 μmol(CO2) mol-1/4°C (EC+LT). Compared to AC+LT, EC+LT plants showed higher values of CO2 fixation, photochemical activity, and Rubisco amount. These latter invest a higher portion of photosynthetic electron flow to O2, differently from AC+LT plants that promote the regulated thermal dissipation processes. In EC+LT plants, the photosynthetic electron flow to O2 acts as a safety mechanism against the excess of absorbed light, upon return to prechilling conditions, allowing photosynthetic apparatus to maintain its efficiency. In AC+LT plants, the increase of thermal dissipation processes was not adequate to guarantee the PSII photoprotection and the photosynthetic recovery after chilling., C. Arena, L. Vitale., and Obsahuje bibliografii