Orcuttieae is a small tribe of C4 grasses endemic to seasonal pools in the southwestern U.S., comprising the basal genus Neostapfia, Tuctoria, and the most derived group, Orcuttia. Growth is initiated underwater, and when pools dry, species undergo a metamorphosis replacing aquatic foliage with terrestrial foliage. O. californica and O. viscida exhibit CAM-like diel fluctuations in acidity in the aquatic foliage. Pulse-chase studies showed that although CO2 was fixed into malic acid in the dark, an overnight chase in the dark revealed that most label was not retained in organic acids, indicating a role other than CAM. Terrestrial foliage exhibited a very different diel fluctuation; acids accumulated during the day, and diminished overnight. Malic acid predominated and was secreted on the surface of the leaf in a manner similar to another arid land species. This terrestrial daytime acid accumulation may not be related to photosynthetic pathway but may play an anti-herbivore function. No acid fluctuations were observed in either N. colusana or T. greenei.
Among various C4 plants we found a wide range in the level of inactivation of phosphoenolpyruvate carboxylase (PEPC) at low temperature (0 °C). The activity of the 2-fold diluted enzyme in crude leaf extracts after 60 min incubation (compared to zero time incubation) at pH 7.5, remained above 87 % at low temperatures for the species Setaria verticillata, Portulaca oleracea, and Saccharum officinarum, and between 11 and 17 % in the species Cynodon dactylon and Atriplex halimus. The enzyme exhibited intermediate levels of inactivation (42 to 58 %) for the species Amaranthus sp., Zea mays, Salsola kali, and Digitaria sanguinalis. The enzyme activity for S. verticillata was unaffected between pH 5.7 and 8.4 during incubation at room and low temperatures. Under similar conditions, the activity of the enzyme from C. dactylon was stable between pH 5.7 and 7.0 and decreased at pH above 7.0, but for Z. mays it was enhanced between pH 5.7 and 6.8 and decreased at pH above 7.0. and G. Zervoudakis ... [et al.].
Field gas exchange and water potential in the leaves of a C3 dicot, Plantago asiatica L., and a C4 monocot, Eleusine indica Gaertn., which dominate in trampled vegetation in eastern Japan were surveyed during the growing periods for two consecutive years. Net photosynthetic rate (PN) of E. indica increased with photosynthetic photon flux density (PPFD) and leaf temperature (TL). PN was not saturated at PPFDs above 1500 µmol m-2 s-1 and at TL above 30 °C. On a sunny day in mid summer, maximum PN was two times higher in E. indica than in P. asiatica [42 vs. 20 µmol(CO2) m-2 s-1], but their transpiration rate (E) and the leaf water potential (ΨL) were similar. Soil-to-leaf hydraulic conductance, which probably plays a role in water absorption from the trampled compact soil, was higher in E. indica than in P. asiatica. The differences in photosynthetic traits between E. indica explain why E. indica communities more commonly develop at heavily trampled sites in summer than the P. asiatica communities. and T. Kobayashi, K. Okamoto, Y. Hori.
Differences in leaf δ13C among four dominant species as well as the species-specific response to the fluctuations of either soil moisture or monthly mean temperature were examined along a secondary succession sere with a time scale from 3 to 149 y on the Loess Plateau in north-western China. We used leaf δ13C as a surrogate for water use efficiency (WUE) of the mentioned dominant species. Bothrichloa ischaemun as a dominant species in the final succession stage belongs to C4 photosynthesis pathway, while the other three dominant species occurring in the first three succession stages belong to C3 pathway. The overall trend of leaf δ13C variation among the three C3 species was Artemisia gmelinii (in the third stage) and Lespedeza davurica (in the second stage) > Artemisia scoparia (in the first stage). This suggests that species with higher WUE (more positive leaf δ13C) would have substantial competitive advantages in the context of vegetation succession. Furthermore, species with highest WUE (i.e. C4 pathway) have great potential to be dominant in the final succession stage in the habitats (such as the study area) undergoing strong water stress in growing season. The evolution of WUE among the dominant species occurring in different succession stages strongly depends on the time scale of given stage since abandonment. The longer the time scale is, the more significant the differences among them in terms of leaf δ13C, hence WUE. Our results support the notions that leaf δ13C may be more positive when water supply is less favourable.
The effects of continuous soil hypoxia on stomatal conductance (g^ and net photosynthetic rate (P^) ů* seedlings of Taxodium disíichum, Quercus lyrata, and Q. falcata var. pagodaefolia were studied under controlled environment. Soil oxygen deficiency induced significant stomatal closure and reduction of in oak species within 1-3 d. This response pattem continued resulting in average daily values of g^ reduced 85 and 40 % within 14 d in g. falcata and Q. lyrata as compared to control plants, respectively. Ehiring the same period Pn reduced 96 and 71 % in 0. falcata and Q. lyrata as compared to control plants, respectively. In T. distichum, however, gg and Pff were reduced 18 and 33 % by day 8. Significant recoveiy of gg and was noted in T. distichum. By day 14, gg had recovered to 91 % and to 92 % of control plants. In oak species, however, remained significantly lower than in control plants without any apparent recovery. The regain of photosynthetic activity and stomatal functioning in flood-tolerant species appears to be an important flood- tolerance characteristic allowing these species to fimction under flooded soil.
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m-2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (PN) was 3.9 µmol(CO2) m-2 s-1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest PN in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 µmol m-2 s-1 of photosynthetic photon flux density (PPFD), N leaves produced the highest PN, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side. and J. Gomes-Laranjo ... [et al.].
Photochemical efficiency, photosynthetic capacity, osmoprotectants, and relative water content (RWC) were recorded in saplings of two evergreen plants (Boehmeria rugulosa Wedd. and Olea glandulifera Wall. ex G. Don) grown inside (GL) and outside (OP) a glasshouse during the winter season. The OP plants experienced 2.0-2.5 °C lower air temperature and dew formation in comparison to GL plants. Diurnal observations indicated no change in RWC in the leaves of GL and OP plants, while significant reduction in both transpiration and net photosynthetic (PN) rates was observed in OP plants: the reduction in PN was much more prominent as was also reflected by poor water use efficiency of these plants. Similarly, OP plants also showed decrease in the apparent quantum yield and irradiance-saturated CO2 assimilation rate. The decrease in PN was not associated with decreased stomatal conductance. However, a significant reduction in the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and Chl content was recorded in the OP plants which also contained more total soluble saccharides but less proline contents. The greater enhancement of PN at 15 °C in comparison to measurements taken at 10 °C in OP plants over GL plants probably indicated an increase in mesophyll capacity of the OP plants' growth at increased temperature. Hence the enhanced growth and productivity of plants grown in sheltered environments could be associated to their higher photosynthetic activity that may have important bearing on their field establishment and productivity in the long run. The response varied with plant species; reduction in PN was greater in B. rugulosa than in O. glandulifera. However, the recovery of OP plants in terms of Fv/Fm in the subsequent months revealed that photosynthetic system of these plants is revocable. and S. C. Joshi, S. Chandra, L. M. S. Palni.
To understand growth limitations of photosynthetic microorganisms, and to investigate whether batch growth or certain photosynthesis-related parameters predict a turbidostat (continuous growth at constant biomass concentration) growth rate, five green algal species were grown in a photobioreactor in batch and turbidostat conditions and their susceptibilities to photoinhibition of photosystem II as well as several photosynthetic parameters were measured. Growth rates during batch and turbidostat modes varied independently of each other; thus, a growth rate measured in a batch cannot be used to determine the continuous growth rate. Greatly different photoinhibition susceptibilities in tested algae suggest that different amounts of energy were invested in repair. However, photoinhibition tolerance did not necessarily lead to a fast growth rate at a moderate light intensity. Nevertheless, we report an inverse relationship between photoinhibition tolerance and minimum saturating irradiance, suggesting that fast electron transfer capacity of PSII comes with the price of reduced photoinhibition tolerance.
Activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) is an important parameter determining the rate of net photosynthesis (PN) in situ for which no information is available with reference to altitude. We analyzed activation state along with PN in three plant species and their cultivars grown at low (LA, 1 300 m) and high (HA, 4 200 m) altitudes. No significant change in PN and the initial activity of RuBPCO was obtained with reference to altitude. However, activation state of RuBPCO was reduced significantly in the HA plants as compared to the LA ones. Hence low partial pressure of CO2 prevailing at HA might be responsible for the lower activation state of RuBPCO. and Narinder Kumar, Sanjay Kumar, Paramvir Singh Ahuja.
Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and trees differ strikingly in water use strategy, which may result in a significant difference in photosynthetic light use between both growth forms. However, the difference in the photosynthetic efficiency and light energy dissipation between these two growth forms is poorly understood. Moreover, photorespiration is an important mechanism of photoprotection under conditions of high light. In this study, we used Bridelia stipularis (Linn.) Bl. (liana) and Strophioblachia fimbricalyx Boerl. (tree) in order to measure the response curves of the gas exchange and photosynthetic electron flow to the incident light gradients and intercellular CO2 concentration, as well as the hydraulic conductivity. We tested whether the photochemical efficiency and photorespiration differed between both growth forms. Our results clearly demonstrated that B. stipularis possessed a significantly higher stem and leaf specific hydraulic conductivity, total electron flow, and maximum rate of ribulose-1,5-bisphosphate regeneration compared to the sympatric tree S. fimbricalyx. Correspondingly, B. stipularis exhibited a significantly higher photochemical quenching coefficient and electron flow to photorespiration relative to S. fimbricalyx under saturating light levels. We suggested that photorespiration might play an important role in photoprotection for both species under high light, but particularly for B. stipularis. These findings could enrich our knowledge of the superior photosynthetic and growth performance of lianas over the co-occurring trees., S.-B. Zhang, J.-L. Zhang, K.-F. Cao., and Seznam literatury