Effect of three Zn2+ concentrations, i.e. 0.075 (cl), 7.50 (c2) and 37.5 (c3) jiM, on rice seedlings was studied at three stages, i.e. 1, 14 and 21 d after transplantation. Typical deficiency symptoms were observed in both solution and sand cultures of cl and c2, but the effects were more pronounced in the solution culture. The c3 concentration was toxic. There was marked reduction in growth, chlorophyll (Chl) contents (particularly Chl b), Hill reaction activity, photophosphorylation rate (particularly non-cyclic photophosphorylation), thylakoid phosphorylation, and i'‘C02-fixation at the cl concentration. However, a similar reduction was also observed in thylakoid phosphorylation at the c3 concentration. Hence the optimum zinc concentration in the nutrient medium lied between c2 and c3 Zn2+. By regression the theoretical optimum Zn concentration was calculated as 19.20 pM (1.28 mg kg'i) Zn2+. Partitioning of ^'^C-photosynthates indicated reduced allocation to sugar and starch fractions and increased fřee amino acids concentration at the cl concentration and vice-versa at c2 and c3.
The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced., M. Grzesik, Z. Romanowska-Duda, H. M. Kalaji., and Obsahuje bibliografii
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA−. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low
re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain., Y. P. Sun, J. Liu, R. X. Cao, Y. J. Huang, A. M. Hall, C. B. Guo, L. J. Wang., and Obsahuje bibliografii
With the aim to contribute to the elucidation of the role of phytohormones in response of plants to adverse environmental conditions, seedlings of Phaseolus vulgaris, Nicotiana tabacum, Beta vulgaris, and Zea mays were supplied with water, 100 µM abscisic acid (ABA), or 10 µM N6-benzyladenine (BA) immediately before imposition of water stress (WS). In all four species, contents of chlorophylls (Chls) and carotenoids were markedly decreased during WS and after rehydration only in plants pre-treated with water but not in those pre-treated with ABA or BA. Contents of pigments of xanthophyll cycle increased during WS more in plants pre-treated with ABA or BA than in those pre-treated with water, but the degree of their de-epoxidation was highest in the later. Similarly, the efficiency of photosystem 2, determined as variable to maximal Chl fluorescence ratio, was not markedly decreased in bean plants pre-treated with ABA or BA in contrast to those pre-treated with water. The imposed WS was not severe enough to damage chloroplast ultrastructure. However, different changes in a size of starch inclusions were observed. In bean plants, the amount of starch increased considerably in plants pre-treated with water, while it decreased in BA pre-treated plants and no change was found in ABA pre-treated ones. The starch content declined under WS in sugar beet and tobacco plants but only moderate changes were found in ABA or BA pre-treated plants. Thus the application of BA and especially of ABA reduced the negative effects of subsequent WS. and D. Haisel ... [et al.].
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited. and H. D. Li ... [et al.].
Activity of glycollate oxidase (GO) was inhibited by allantoin in spinách leaves after vacuum infiltration. The GO activity was inhibited by 60.1 % at 1.5 mM allantoin. The activity of catalase was inhibited by allantoin too, both in vitro and in vivo experiments, and accumulation of H2O2 inhibited the GO activity. Mercaptoethanol decreased the inhibitoiy effects induced by allantoin and protected the GO activity. As to the mechanism of the inhibitory elfect, it is possible tiiat allantoin inhibited GO indirectly through its inhibitory eťfect on catalase and subsequent H2O2 accumulation in spinách leaves. This, in tum, oxidized essential sulfhydryl group(s) on GO and inhibited its activity.
Maize plant inbred lines, one Al-sensitive (B-73) and two Al-tolerant (F-2 and L-2039), were grown hydroponically in the presence of 200 µM Al. After 13 d of growth, root and shoot lengths, photosystem 2 (PS2) activity, chlorophyll (Chl) content, 5-aminolevulinic acid (5-ALA) synthesis rate, chlorophyllase (Chlase) activity, and N, Mg, Fe, and Mn contents in leaves were determined. PS2 activity and Chl content were most severely affected by Al in B-73, but F-2 was almost unaffected. This was in accordance with Al-accumulation in the plants. The observed changes in B-73 coincided with 5-ALA synthesis inhibition, Chlase activation, and leaf deprivation of Fe and Mg. In Al-treated L-2039 plants, the leaf Mg and Mn contents were decreased. Also, an excessive Chlase activation was found in Al-treated L-2039, without a substantial Chl loss. This may indicate the activation of different enzyme pools in tolerant and sensitive genotypes under low-stress conditions. and N. Mihailovic, G. Drazic, Z. Vucinic.
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (PN) and stomatal conductance (gs), intercellular CO2 concentration (Ci), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in PN, gs, Fv/Fm ratio, photosynthetic pigments and starch, and increases in Ci, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in PN showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield. and R. Rai, M. Agrawal, S. B. Agrawal.
Effects of selective reagents of amino groups (fluorescamine, Fc) and thiol [5,5'-dithio-bis(2-nitrobenzoic) acid, DTNB] groups on the diaphorase activity of spinach ferredoxin:NADP+ oxidoreductase (FNR, E.C 1.18.1.2) in the presence of dibromothymoquinone (DBMIB) as an electron acceptor were studied. The incubation of FNR with 250 μM Fc in the time range from 0 to 120 min led to the gradual decrease of FNR activity according to biphasic kinetics. At the initial phase the activity (defined as the rate of NADPH oxidation) decreased about 4-time faster than at the subsequent second slower phase. Incubation of FNR simultaneously with Fc and DBMIB for more than 20 min caused restoration of the activity to about 80 % of the control. The inhibitory effect of Fc on the FNR-catalysed DBMIB reduction had non-competitive character. Incubation of FNR with DTNB led also to a gradual decrease of the enzyme activity, which reached about 45 % of the control after 2 h of incubation. Thus neither amino nor thiol groups in the FNR molecule are involved directly in the DBMIB reduction. However, the presence of DBMIB in the incubation medium influenced the inhibitory pattern of Fc and DTNB, and this suggests that DBMIB modified the conformational state of the FNR molecule. and J. Grzyb, M. Bojko, S. Więckowski.
Isolated and interactive effects of angular leaf spot (caused by Phaeoisariopsis griseola) and rust (caused by Uromyces appendiculatus) on leaf gas exchange and yield was studied in common bean (Phaseolus vulgaris L. cv. Carioca) plants. Gas exchange was measured on 37, 44, 51, and 58 d after planting using a portable photosynthesis system. The inoculation of plants with P. griseola (P), U. appendiculatus (U), and the combination of both pathogens (P+U) caused a significant reduction of net photosynthetic rate (PN) and yield. The reduction of stomatal conductance (gs), PN, and yield was higher under P and combination of P+U than under U treatment. By effect of U, the reduction on yield was higher than the reductions on gas exchange parameters. On the treatment P+U, a reduction of 23 % in PN and a correspondent reduction of 32 % in yield was observed. The interactive effects of the pathogens on yield could be explained in part by the decreases in gs and in PN of diseased bean leaves. The combined effect of both diseases on yield and gas exchange parameters suggests an antagonistic interaction. and W. C. Jesus Junior ... [et al.].