Primary productivity in marine waters is widely estimated by the measurements of 14C incorporation, the underwater light climate, and the absorption spectra of phytoplankton. In bio-optical models the quantum efficiency of carbon fixation derived from 14C incorporation rates, the photosynthetically absorbed radiation derived from the underwater light climate, and the phytoplankton absorption spectra are used to calculate time- and depth-integrated primary productivity. Due to the increased sensitivity of commercially available fluorometers, chlorophyll a in vivo fluorescence became a new tool to assess the photosynthetic activity of phytoplankton. Since fluorescence data yield only relative photosynthetic electron transport rates, a direct conversion into absolute carbon fixation rates is not possible. Here, we report a procedure how this problem can be adressed in freshwater phytoplankton. We adapted a marine bio-optical model to the freshwater situation and tested if this model yields realistic results when applied to a hypertrophic freshwater reservoir. Comparison of primary productivity derived from 14C incorporation to primary productivity derived from Chl a fluorescence showed that the conversion of fluorescence data into carbon fixation rates is still an unsolved problem. Absolute electron transport rates calculated from fluorescence data tend to overestimate primary production. We propose that the observed differences are caused mainly by neglecting the package effect of pigments in phytoplankton cells and by non-carbon related electron flow (e.g., nitrogen fixation). On the other hand, the 14C incorporation rates can be artificially influenced by "bottle effects", especially near the water surface, where photoinhibition, photorespiration, and Mehler reaction can play a major role. and M. Gilbert ... [et al.].
Significant linear relationships between photosynthetic capacity and principal components loaded by phloem cell numbers and tracheary elements per minor vein as well as the latter two normalized for vein density (proxy for apoplastic phloem loading capacity involving membrane transporters) were revealed for all apoplastic loaders (summer annuals and winter annual Arabidopsis thaliana). In addition, significant linear relationships between photosynthetic capacity and a principal component loaded by tracheary element cross-sectional areas and volumes per unit of leaf area (water flux capacity proxy) was present for symplastic and apoplastic loaders. Lastly, a significant linear relationship between photosynthetic capacity and a principal component loaded by phloem cell cross-sectional areas and volumes per unit of leaf area (proxy for symplastic loading capacity involving cytosolic enzymes for companion cells) was revealed for summer annual symplastic loaders as well as for A. thaliana (in the case of sieve elements, a proxy for sugar export capacity from the leaves)., S. K. Polutchko, J. J. Stewart, B. Demmig-Adams, W. W. Adams., and Obsahuje bibliografické odkazy
Superoxide dismutase (SOD) activity and parameters of chlorophyll fluorescence, the ratio of maximal to variable fluorescence (Fv/Fm), maximal fluorescence (Fm), and minimal fluorescence (F0) were determined on Picea abies growing at different altitudes. The decreases of Fv/Fm and Fm, in comparison to samples from the lower stands (control), were found on trees from the highest stands. The decrease of fluorescence parameters was reversible, at least partly, after keeping branches for some days in the laboratory. Fv/Fm measured in spring when trees were partially covered with snow revealed greater degree of photoinactivation in branches collected from above the snow in comparison to those from below the snow. In samples collected from above snow also slower recovery from stress was observed. Two main SOD isoforms were determined in needles of P. abies, and classified as CuZnSODs. The activity of both SOD isoforms was increasing with the altitude, thus indicating the highest level of oxidative stress at the timberline zone. and Z. Miszalski ... [et al.].
Six leaf samplings were conducted in two sunflower (Helianthus annuus L.) hybrids during the 2006 growing season in order to evaluate a simple model proposed for leaf area (LA) estimation. A total of 144 leaves were processed using an image analysis system and LA, maximum leaf width (W) [cm], and midvein length (L) [cm] were measured. Also, LA was estimated using the model proposed by Rouphael et al. (2007). Measured LA was exponentially related with L and W, and the W-LA relationships showed higher r2. Estimated LA was strongly and exponentially related with L. Strong, linear relationships with high r2 between estimated and measured LA confirmed the high predictability of the proposed model. and J. T. Tsialtas, N. Maslaris.
Industrial chicory, Cichorium intybus L., has rather poor early vigour under the typical early spring morning conditions of low temperatures and high light intensity. Screening tools are being developed to assess the cold tolerance/sensitivity of young industrial chicory plants under these conditions. Refinement of such tools requires better understanding of the plants' physiological responses. In this paper we discuss the effects of growth temperature (GT), measurement temperature (MT), and measuring light intensity (ML) on the relaxation of the Kautsky curve. We chose the chicory variety 'Hera', as it is known to possess a good average early vigour. Young plants of the variety 'Hera' were grown at three temperatures (GT): 16°C (reference), 8°C (intermediate), and 4°C (cold stress). The dark relaxation kinetics were analyzed at different light intensities (ML) in combination with different measurement temperatures (MT). The three components of the nonphotochemical quenching process (NPQE, NPQT, and NPQI) were determined. NPQE was not affected by GT but was significantly affected by MT and ML. NPQT and NPQI were affected by all factors and their interactions. An acclimation effect for plants grown at low GT was detected. Acclimation resulted in lower NPQT and NPQI values. The halftime of the inhibition depending on NPQ (NPQI) was not affected by any of the factors investigated. Based on the data generated, we conclude that NPQI is a valuable parameter for screening the cold sensitivity of young industrial chicory plants. and P. Lootens ... [et al.].
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar 'Hera' to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated. and S. Devacht ... [et al.].
Ten light-harvesting complex (Lhc) proteins were investigated to determine which was the most appropriate protein marker of senescence in detached rice leaves. The levels of Lhc proteins were monitored by immunoblot analysis, which was conducted using commercially available antibodies raised against each Lhc protein. Among the Lhc proteins evaluated in this study, Lhca1, Lhcb1, Lhcb2, Lhcb3, and Lhcb5 were not appropriate to be used as senescence markers while others can be used after optimization of the procedure. and K. Kang ... [et al.].