Young plants of Calamagrostis epigejos (L.) Roth were grown in controlled environments with two regimes of CO2 in the air: normál (350 cm^ m'^) and elevated (700 cm^ m‘3). The relative growth rate of plants grown at elevated CO2 was increased by about 20 % in comparison with control plants cultivated at ambient CO2 concentration. Partitioning of assimilates into roots (+ rhizomes) and shoots was the same in both treatments. Slightly lower values of specifíc leaf area, leaf mass ratio and leaf area ratio were found in the plants grown at elevated CO2. The net photosynthetic rate (P^) was measured gasometrically in plants from both treatments at 350 and 700 cm^ m"^ CO2 in the leaf chamber. There were no signifícant differences between plants grown at either CO2 concentration in their responses to radiation and CO2 conditions during measurements, i.e., no regulation of photosynthetic processes in response to elevated CO2 was detectable. at saturating irradiance and maximum apparent quantum yield of photosynthesis were always considerably higher at doubled CO2 concentration during measurements.
Net photosynthetic rate (PN) was studied in field-grown peanut cv. GG 2 in relation to leaf position, time of day, reproductive-sink, and phenophase. In general, PN remained higher in the upper leaves (first from top to the fourth) than in the lower leaves (fifth to eighth). The mean PN of the leaves situated upper and the leaves lower in the canopy increased from the morning, reached a maximum during noon hours, and decreased thereafter. Between 09:00 to 10:00 h, PN, stomatal conductance (gs), and transpiration rate (E) in the upper leaves were higher than in the lower leaves, but between 12:00 and 13:00 h, these activities increased significantly in the lower leaves. Highest PN was found during pod-development phase. Removal of flowers, and hence of active reproductive-sink, decreased plant height and number of leaves, and initiated accumulation of photosynthates in the leaves. The PN per unit leaf area in plants with reproductive-sink (WRS) was similar to those without reproductive-sink (WORS). However, leaf area of WORS plants decreased significantly, mainly due to the reduction in number of leaves. No feed-back inhibition of PN (per unit leaf area) was found despite accumulation of photosynthates in the leaves as a result of removal of the active reproductive-sink. and P. C. Nautiyal, V. Ravindra, Y. C. Joshi.
We investigated net photosynthetic rate and antioxidative enzyme activities in Erythrina orientalis grown in three different sites: Makati and Quezon (cities with high levels of air pollution, HP) and La Mesa (a non-polluted area, NP). Photosynthetic activity of E. orientalis was significantly reduced in the HP cities. In contrast, activities of the antioxidative enzymes ascorbate peroxidase and glutathione reductase were significantly higher in HP cities than in the NP area. and S. Y. Woo, D. K. Lee, Y. K. Lee.
Using EPR spectroscopy it was found that CdCl2 and HgCl2 interact (1) with the intermediates Z./D., i.e. with the tyrosine radicals on the donor side of photosystem (PS) 2 situated in the 161st position in D1 and D2 proteins; (2) with the primary donor of PS1 (P700) whereby the oxidation of chlorophyll (Chl) a dimer in the reaction centre of PS1 occurs yet in the dark; (3) with the manganese cluster which is situated in the oxygen evolving complex. Due to these interactions of investigated metal chlorides with the photosynthetic apparatus, the interruption of the photosynthetic electron transport through photosynthetic centres occurs. Monitoring of time dependence of EPR signal I of chloroplasts treated with CdCl2 or HgCl2 after switching off the light suggests that all mechanisms, i.e. direct, cyclic, and non-cyclic reductions of P700+ are damaged. The formation of complexes between mercury or cadmium ions and amino acid residues constituting photosynthetic peptides was suggested as possible mechanism of their inhibitory action. The higher HgCl2 efficiency in comparison with that of CdCl2 was explained by higher ability of mercury ions to form complexes with amino acids, what was demonstrated by their apparent binding constants: K = 10 200 M-1 for Hg2+ ions, and K = 3 700 M-1 for Cd2+ ions. and F. Šršeň, K. Kráľová.
A stem-girdling experiment was carried out on an evergreen conifer, the Korean pine (Pinus koraiensis Sieb. et Zucc.), in mid summer in Northeast China. A 50 % higher respiration rate at the upper part of the stem was observed 3 d after stem girdling, and a stable higher rate (1.2-2.8 times) one week later. However, no higher soluble sugar or starch contents were found in the upper bark of the girdled stems in measurements over three weeks. These findings indicate that most of the newly-formed photosynthates were consumed by the high respiratory activity; this is also implied by the strong correlation between the photosynthetic photon flux over the canopy (PPF) and respiration at the upper parts of girdled stems. Moreover, the maximum PPF and cumulative PPF one day before measurement (PPFmax-Y and CPPF-Y, respectively) were closely correlated with the respiratory difference between the upper and the lower parts, but no such correlation was found with the instantaneous PPF (PPF-I) and cumulative PPF on the current day from sunrise to measured time point (CPPF-C). This shows that photosynthates newly formed by canopy needles need at least one day for transportation in order to increase the stem respiration at tree breast height. and W. J. Wang ... [et al.]
Nitrogen defíciency caused pronounced reductions in the photosynthetic capacity and differential losses in chlorophyll, cytochrome / and Mg2'''>specific ATPase amounts or activities in suspension cultured cells of Chenopodium rubrum L. This reduced outfit of the photosynthetic machinery and limited protein tumover capacity are possible reasons for our observation that nitrogen deficiency exacerbates the hannful effects of high irradiance on photosystem 2 photochemical efficiency. The effect of nitrogen defíciency on photoinhibition increased over a broad range of photon flux densities and it was detectable in both the short-term and long-tenn experiments. Differences in the effects of the nitrogen regime and irradiance on several growth parameters were demonstrated. The main effect of nitrogen defíciency was a reduction of protein synthesis and cell division, whereas the irradiance chiefly affected the accumulation of carbon in the cell suspensions. Synergistic effects of nitrogen regime and irradiance could also be demonstrated for betalain accumulation which was the greatest under high irradiance and expressed nitrogen defíciency.
Miscanthus is one of the most promising bioenergy crops with high photosynthetic nitrogen-use efficiency (PNUE). It is unclear how nitrogen (N) influences the photosynthesis in Miscanthus. Among three Miscanthus genotypes, the net photosynthetic rate (PN) under the different light intensity and CO2 concentration was measured at three levels of N: 0, 100, and 200 kg ha-1. The concentrations of chlorophyll, soluble protein, phosphoenolpyruvate carboxylase (PEPC), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, leaf anatomy and carbon isotope discrimination (Δ) in the leaf were analyzed to probe the response of photosynthesis in Miscanthus genotypes to N levels. PN in all genotypes rose significantly as N application increased. The initial slope of response curves of PN to Ci was promoted by N application in all genotypes. Both stomatal conductance and Ci were increased with increased N supply, indicating that stomatal factors played an important role in increasing PN. At a given Ci, PN in all genotypes was enhanced by N, implying that nonstomatal factors might also play an important role in increasing PN. Miscanthus markedly regulated N investment into PEPC rather than the Rubisco large subunit under higher N conditions. Bundle sheath leakiness of CO2 was constant at about 0.35 for all N levels. Therefore, N enhanced the photosynthesis of Miscanthus mainly by increasing stomatal conductance and PEPC concentration., X.-P. Feng ... [et al.]., and Obsahuje bibliografii