Ramie (Boehmeria nivea L.) is an important crop that serves as fine fiber material, high protein feedstuff, and valuable herbal medicine in China. However, increasing salinity in soil limits the productivity. We investigated in a greenhouse experiment responses to salinity in two ramie cultivars, Chuanzhu-12 (salt-tolerant cultivar, ST) and Xiangzhu-2 (salt-sensitive cultivar, SS), to elucidate the salt tolerance mechanism of this species. Salinity stress substantially reduced both chlorophyll and carotenoid contents. In addition, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentration, and the ratio of intercellular CO2 to ambient CO2 were affected, less in ST. Nevertheless, salinity stress markedly improved water use efficiency and intrinsic water use efficiency in both species. Moreover, relative water contents, soluble proteins, and catalase activity were substantially impaired, while proline accumulation and superoxide dismutase activity were enhanced substantially, more in ST. Furthermore, noteworthy increase in peroxidase activity and decrease in malondialdehyde content was recorded in ST, whereas, in SS, these attributes changed conversely. Overall, the cultivar ST exhibited salt tolerance due to its higher photosynthetic capacity, chlorophyll content, antioxidative enzyme activity, and nonenzymatic antioxidants, as well as reduced lipid peroxidation and maintenance of the tissue water content. This revealed the salt tolerance mechanism of ramie plants for adaptation to salt affected soil., C.-J. Huang, G. Wei, Y.-C. Jie , J.-J. Xu, S.-Y. Zhao, L.-C. Wang, S. A. Anjum., and Obsahuje seznam literatury
The effects of elevated growth temperature (ambient + 3.5°C) and CO2 (700 μmol mol-1) on leaf photosynthesis, pigments and chlorophyll fluorescence of a boreal perennial grass (Phalaris arundinacea L.) under different water regimes (well watered to water shortage) were investigated. Layer-specific measurements were conducted on the top (younger leaf) and low (older leaf) canopy positions of the plants after anthesis. During the early development stages, elevated temperature enhanced the maximum rate of photosynthesis (Pmax) of the top layer leaves and the aboveground biomass, which resulted in earlier senescence and lower photosynthesis and biomass at the later periods. At the stage of plant maturity, the content of chlorophyll (Chl), leaf nitrogen (NL), and light response of effective photochemical efficiency (ΦPSII) and electron transport rate (ETR) was significantly lower under elevated temperature than ambient temperature in leaves at both layers. CO2 enrichment enhanced the photosynthesis but led to a decline of NL and Chl content, as well as lower fluorescence parameters of ΦPSII and ETR in leaves at both layers. In addition, the down-regulation by CO2 elevation was significant at the low canopy position. Regardless of climate treatment, the water shortage had a strongly negative effect on the photosynthesis, biomass growth, and fluorescence parameters, particularly in the leaves from the low canopy position. Elevated temperature exacerbated the impact of water shortage, while CO2 enrichment slightly alleviated the drought-induced adverse effects on P max. We suggest that the light response of ΦPSII and ETR, being more sensitive to leaf-age classes, reflect the photosynthetic responses to climatic treatments and drought stress better than the fluorescence parameters under dark adaptation. and Z.-M. Ge ... [et al.].
Chlorophyll fluorescence parameters (Fv/Fm, RFd) of nine bryophyte and one lichen species were investigated after prolonged exposure to elevated UV-B radiation. The majority of the investigated bryophytes showed a prompt or inducible tolerance to increase UV-B irradiation. Among the investigated species high degree of UV-tolerance coincides with strong desiccation tolerance. and Z. Csintalan ... [et al.].
One of the effective ways to address the effects of abnormal climate change on plant is to find germplasms that have better resistance to adverse environments. In this paper, we studied the responses of 5 pepper species Capsicum annuum L. (CA), C. baccatum L. (CB), C. chinense Jacquin. (CC), C. frutescens L. (CF) and C. pubescens Ruiz & Pavon (CP) as well as a wild pepper C. baccatum var. baccatum (CBY) to waterlogging stress. The results showed that warterlogging treatment greatly decreases photosynthetic pigment content, net photosynthetic rate (PN) and stomatal conductance (gs), and dramatically increases proline content and water-use efficiency (WUE) in all tested pepper, suggesting that pepper has weak resistance to waterlogging stress. The results also showed that changes of the above parameters vary in different species. CP had the smallest decreases in photosynthetic pigment content, PN, and gs and greatest increases in proline content and WUE. By contrast, CC had the greatest decreases in photosynthetic pigment content, P N, and gs and smallest increases in proline content and WUE, indicating that different species had different resistance to adverse environment and species CP and CC had the strongest and the weakest resistances, respectively. In addition, the study also demonstrated that wild pepper CBY had better resistance to adverse environment than all the tested species, indicating loss of the stress resistance genes during the process of domestication. Taking together, our study strongly suggests that pepper species should crossbreed with other species and wild pepper to expand genetic diversity, enlarge genetic distance, promote production, and improve the resistance to adverse environments. and L. J. Ou ... [et al.].
In order to test the effects of irrigation depth on winter wheat photosynthesis, four treatments were applied in a field experiment using PVC growth tubes (identical amounts of water were applied on the land surface, and at 60, 75, and 90% of the depth for the winter wheat root distribution, denoted as D0, D60, D75, and D90, respectively). Compared to the surface irrigation treatment D0, the leaf area index, chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration increased with irrigation depths. The values of these indicators obtained by the underground irrigation treatment D75 were higher than those of D60 and D90, and thus D75 was found to be the optimum irrigation depth. Furthermore, a positive but not significant correlation (r = 0.62) between carbon isotope discrimination (Δ13C) and grain yield was found. This study improves our understanding of the mechanism of underground water distribution control with depth, and the efficiency of
water-saving irrigation for winter wheat., L. J. Zheng, J. J. Ma, X. H. Sun, X. H. Guo, J. Jiang, R. Ren, X. L. Zhang., and Obsahuje bibliografii
The effect of heat stress (35 to 50 °C) on photosynthesis was investigated in heat tolerant (N 22) and heat sensitive (IR 8) cultivars of rice {Oryza sativa L.). The net photosynthetic rate showed greater thermal stability in N 22 than in IR 8. The relative dechne of the rate of whole chain electron transport and photosystem 2 (PS2) activity was more pronounced in IR 8 than N 22. In both cultivars photosystem (PSI) activity was stimulated by thermal treatment. Chlorophyll (Chl) a fluorescence transient arising ffom PS2 showed inhibition in both cultivars at 45 and 50 °C. Maximum fluorescence decreased more in IR 8 than in N 22 by high temperature treatment.
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (PN), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high PN duration, and accumulation of photosynthates in wheat plants., C. Xu ... [et al.]., and Obsahuje bibliografii
o reveal the dynamics of short-term photosynthetic acclimation to increased irradiance, the light response of photochemical (qp), non-photochemical (q^) and Fo (qo) quenchings of chlorophyll (Chl) fluorescence and Chl and carotenoids compositíon in Norway spruce needles were monitored within three days after transfer of saplings ffom low diffuse irradiance (maximum photosynthetic photon fluence density PPFD 50 pmol m'^ s'i) to direct sun radiation (maximum PPFD 2000 pmol m‘2 s'*). Irradiance responses of fluorescence quenching coefficients revealed the occurrence of substantíal changes in partítioning of excitation energy between photochemical reactions and radiatíonless dissipation within two days. The saturating irradiance for qj,j and the capacity of non-radiatíve dissipation processes was shifted from about 450 pmol m'^ s** to 1620 pmol m-2 s'L Whereas immediately after exposure to ťull sunlight was completely reduced at 1620 pmol m'^ s'*, two days later 40 % of was stíll present in oxidized form at this irradiance. A fast pigment photobleaching at noon prevented the over-reduction of and thus it was one of the possible short-term acclimation processes. No severe photoinhibition of photosystem 2 (PS 2) photochemistry occurred within the period of investigation as can be judged from the high F^/F^ value.
The widespread Mediterranean Pinus pinea showed exceptionally low genetic diversity and low differentiation between traits in the adult phase. We explored the adaptation potential of seedlings from four main Iberian provenances during their regeneration phase. We assessed the variability of shoot growth, allometry, physiological traits, and phenotypic plasticity to the interactive effect of light and water environments during 8-month moderate water-stress cycle and after one-week heat wave. The effect of shade and drought was mainly orthogonal whatever the provenance. The inland La Mancha provenance showed higher shoot growth and biomass compared to the southern coastal Depresión-del-Guadalquivir provenance. Following the heat wave, La Mancha presented higher net photosynthetic rates, a lower decrease in maximal quantum efficiency of PSII, and a higher accumulated relative height growth, thus, showing an adaptive advantage. The observed differences corroborated the ecological grouping of the provenances along latitudinal and inland-coastal gradients. We confirmed the high adaptive plasticity of Pinus pinea to the unpredictable Mediterranean environment., M. Pardos, R. Calama., and Obsahuje bibliografii
We compared responses of maize, tomato, and bean plants to water stress. Maize reached a severe water deficit (leaf water potential -1.90 MPa) in a longer period of time as compared with tomato and bean plants. Maize stomatal conductance (gs) decreased at mild water deficit. gs of tomato and bean decreased gradually and did not reach values as low as in maize. The protein content was maintained in maize and decreased at low water potential (ψw); in tomato it fluctuated and also decreased at low ψw; in bean it gradually decreased. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity remained high at mild and moderate stress in maize and tomato plants; in bean it remained high only at mild stress. and M. Castrillo ... [et al.].