The paper presents the results of analysis of temporal and spatial changes of snow water equivalent (SWE) in the mountain basin of the upper Hron River over 40 hydrological years. Spatial distribution of SWE was simulated with the WaSiM model. Measured as well as simulated data indicated despite large temporal variations of SWE, the period since the mid-1980-ties seems to have less snow than the previous decades. Simulations indicated pronounced decrease of SWE in the southern part of the basin. Changes of SWE in the highest mountains were not so pronounced. The analysis of previous decades is considered to be the first step in the assessment of impacts of expected climate changes in the future. and Príspevok je venovaný analýze časových a priestorových zmien vodnej hodnoty snehovej pokrývky v povodí horného Hrona za obdobie 40 rokov (hydrologické roky 1962-2001). Priestorové rozdelenie vodnej hodnoty snehu bolo simulované modelom WaSiM. Napriek veľkej variabilite vodnej hodnoty merané aj simulované údaje ukazujú, že od polovice 80-tych rokov 20. storočia došlo v povodí k poklesu vodnej hodnoty snehu. Výsledky simulácie priestorového rozdelenia vodnej hodnoty poukazujú na výrazný pokles najmä v južnej časti povodia. Zmeny vodnej hodnoty v najvyšších častiach povodia v jeho severnej oblasti neboli také dramatické. Analýza časových a najmä priestorových zmien vodnej hodnoty snehu za posledné dekády je prvým krokom pri odhade dopadu možnej zmeny klímy na budúce zmeny snehovej pokrývky.
High amounts of precipitation are temporarily stored in high-alpine snow covers and play an important role for the hydrological balance. Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) in water samples have been proven to be useful for tracing transport processes in snow and meltwater since their isotopic ratio alters due to fractionation. In 18 snow profiles of two snowfall seasons, the temporal and spatial variation of isotopic composition was analysed on Mt. Zugspitze. The δ18O and δ2H ranged between –26.7‰ to –9.3‰ and –193.4‰ to –62.5‰ in 2014/2015 and between –26.5‰ to –10.5‰ and –205.0‰ to –68.0‰ in 2015/2016, respectively. Depth-integrated samples of entire 10 cm layers and point measurements in the same layers showed comparable isotopic compositions. Isotopic composition of the snowpack at the same sampling time in spatially distributed snow profiles was isotopically more similar than that analysed at the same place at different times. Melting and refreezing were clearly identified as processes causing isotope fractionation in surficial, initial base or refrozen snow layers. For the future, a higher sampling frequency with detailed isotopic composition measurements during melt periods are recommended to improve the understanding of mass transport associated with snowmelt.
Serious attention is paid today to the problems of landscape regionalization with respect to its hydrological response. The quantification and the spatial pattern of soil drought indicators (SDI) are considered crucial for a correct hydrological zonation of agricultural lands with regard to water-related phenomena of practical importance, such as drought risk, runoff generation and soil erosion. The paper deals with regional estimation of hydrolimits (field capacity, point of limited availability, wilting point) and water storage capacity (expressed as the difference between the field capacity and the wilting point) of the root zone of agricultural landscape and their interpretation as potential soil drought indicators (SDI). A spatial and pedotransfer approach was applied to the region of the Záhorská nížina Lowland. Relevant outputs (parameters of soil water retention curves) were derived from the data of the Comprehensive Agricultural Soil Survey digital database (KPP DB) using pedotransfer functions (Rosetta model). A spatial processing of model outputs to the form of the regional maps of SDI was performed using GIS tools. SDI were then quantitatively evaluated for (i) individual textural soil units and (ii) individual pedo-ecological regions of Záhorská nížina Lowland respectively. Water storage capacity of soil represents the maximum volume of long-term available water in the effective root zone of cultural crops. To be used as soil-drought indicator, the water storage capacity data should always be interpreted in combination with information about the water contents related to the field capacity and the wilting point. Generally, it is assumed that spatial pattern of SDI is closely related to the soil textural units, while in the case of Záhorská nížina Lowland the segmentation of the landscape to pedo-ecological regions is considered inadequate from hydrological point of view. and V súčasnosti je v kruhoch hydrológov venovaná veľká pozornosť problematike regionalizácie krajiny z hľadiska jej hydrologickej odozvy. Kvantifikácia indikátorov pôdneho sucha (SDI) a poznanie ich priestorovej variability sú kľúčové pre korektné delenie poľnohospodársky využívaných pôd na zóny vo vzťahu k hydrologickým javom s praktickým významom, ako sú sucho, tvorba odtoku a pôdna erózia. Príspevok sa v regionálnej mierke zaoberá odhadom hydrolimitov (poľnej vodnej kapacity, bodu zníženej dostupnosti, bodu vädnutia) a vododržnej kapacity (ako rozdielu v obsahu vody medzi poľnou vodnou kapacitou a bodom vädnutia) koreňovej vrstvy pôd v poľnohospodárskej krajine a ich interpretáciou ako potenciálnych indikátorov pôdneho sucha. Pedotransférový prístup bol využitý pre priestorové spracovanie SDI v rámci regiónu Záhorskej nížiny. Relevantné výstupy (parametre vlhkostných retenčných kriviek) boli odvodené z údajov digitálnej databázy Komplexného prieskumu poľnohospodárskych pôd (KPP DB) využitím pedotransférového modelu Rosetta. Výstupy z modelu boli priestorovo spracované do podoby regionálnych máp indikátorov pôdneho sucha s využitím nástrojov GIS a následne kvantitatívne zhodnotené pre (i) jednotlivé pôdne druhy a (ii) jednotlivé pedo-ekologické regióny Záhorskej nížiny. Vododržná kapacita pôdy reprezentuje maximálny objem vody v koreňovej vrstve pôdy dlhodobo prístupnej pre kultúrne plodiny. Údaje o vododržnej kapacite pôd musia byť pre účel stanovenia potenciálu pôdy z hľadiska jej ohrozenosti suchom (teda ako indikátor pôdneho sucha) interpretované vždy v kombinácii s informáciou o obsahoch vody zodpovedajúcich poľnej vodnej kapacite a bodu vädnutia. Všeobecne možno konštatovať, že priestorová distribúcia indikátorov pôdneho sucha je úzko zviazaná s prirodzenou variabilitou pôdnych druhov, kým segmentácia územia podľa pedo-ekologických regiónov je v prípade regiónu Záhorskej nížiny z hydrologického hľadiska nedostačujúca.
The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models. Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity distributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24-82. Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arithmetic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatistical method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab is presented. The models were tested with error criteria by cross-validation. Ordinary kriging was proposed to be the most suitable interpolation method, giving the lowest values of used error criteria among the rest of the interpolation methods.
The idea of the present study is to describe the spatially varying particle size distribution (PSD) along intact aggregate surfaces with the laser diffraction method (LDM) of four silty-loamy and OC enriched horizons of a Dystric Cambisol from the Uhlířská catchment (Czech Republic) with the laser diffraction method (LDM). Besides, the comparability of the LDM with the sieve and pipette method (SPM), the reproducibility, and the effect of pretreatment on the particle size distribution derived by LDM were analysed. The laser diffraction method enables rapid and continuous particle size distribution measurements with required sample amounts of 0.1–0.2 g for each measurement compared to 5–20 g for SPM. The LDM-derived PSD’s can be directly compared with the standardised SPM-derived PSD’s by using regression analysis with coefficients of determination (r²) between 0.83 and 0.93. Sample pretreatment following standardised proceedings indicates a better comparability between the particle size distributions of both methods. Besides, the highest coefficients of variation of up to 78.6 and therefore the lowest reproducibility were found for the unpretreated PSD of the AE and Bs horizon. Thus, limited evaluability and reproducibility of soil material enriched in organic carbon (OC), used in the current study, needs further analysis. For spatial analysis of PSD’s along intact surfaces of soil aggregates and profiles, spatial data interpolation by inverse distance weighting (IDW), kriging, and triangulated irregular networks (TIN) can be used for detailed measuring, mapping, and spatial extension of the sand, silt, and clay fractions at unsampled locations using a set of samples of known locations. The information offers the possibility of comparing and verifying data obtained by non-invasive midinfrared spectroscopy and Vis–NIR spectroscopy by spatial extension for given soil aggregates and profiles.
Areas of the Last Glaciation in northern Poland differ widely as to the conditions controlling the formation of river runoff and solute loads. The aim of the research was to identify chief mechanisms of stream alimentation in this area depending on the scale of a catchment. The analysis rested on data from hydrochemical profiling. Three types of systems were found to occur: in spring-head catchments with areas of the order of 10-2 km2, in small catchments (100 km2), and in medium-sized ones (101-102 km2). The first is connected with the mixing of soil- and groundwater, the second, with the mixing of waters from relatively homogeneous subcatchments, and the third, with the mixing of groundwater from various water-bearing horizons. In headwater catchments, river waters reach a new physico-chemical equilibrium at a distance of 20-40 m; in small catchments, two nested autocorrelation structures (150 and 400 m) reflect the sequence of land cover changes and distances between main tributaries; in medium-sized catchments, river waters demonstrate similarity at a distance of between 300 and 450 m and 1.2 km; it is controlled by the sequence of successive valley reaches of different origins (melt-out basins & ravines).The reported analysis justifies the hypothesis that in the areas of northern Poland covered by the Last Glaciation it is possible to identify the zones and forms of channel alimentation on the basis of hydrochemical interpretation of runoff recorded in gauging profiles only in the case of small catchments no larger than n n x 10 0 km2. In larger catchments, it is only possible to differentiate between ''new water'' (direct fall of precipitation on the channel and the overland flow) and ''old water'', composed of a mixture of soil water and the alimentation from various water-bearing horizons. and V oblastiach severného Poľska ovplyvnených posledným zaľadnením existujú veľmi rozdielne podmienky tvorby odtoku a vyplavovania rozpustených látok. Cieľom nášho výskumu bolo identifikovať hlavné mechanizmy prítokov vody do povrchových tokov v tejto oblasti s ohľadom na mierku povodia. Analýza bola založená na údajoch z hydrochemického profilovania. Boli zistené tri typy systémov: pramenné oblasti s plochou rádu do 10-2 km2 , malé povodia (100 km2 ) a stredné povodia (101 -102 km2 ). V prvom systéme pri tvorbe odtoku dominuje miešanie pôdnej a podzemnej vody, v druhom miešanie vôd z relatívne homogénnych subpovodí, v treťom miešanie podzemnej vody z rôznych vodonosných vrstiev. V pramenných oblastiach nadobúda voda v riekach novú fyzikálno-chemickú rovnováhu vo vzdialenosti 20-40 m. V malých povodiach boli zistené dve nadväzujúce autokorelačné štruktúry (150 a 400 m), ktoré odrážajú postupnosť zmien pokrytia územia a vzdialeností medzi hlavnými prítokmi. V stredne veľkých povodiach voda v riekach poukazuje na podobnosť v mierke medzi 300 a 450 m a 1,2 km. Táto podobnosť je daná postupnosťou nadväzujúcich úsekov dolín rôzneho pôvodu (povodia modelované vodou z topiaceho sa ľadovca, resp. strže). Analýzy potvrdzujú hypotézu, že v oblastiach severného Poľska zasiahnutých posledným zaľadnením možno pomocou hydrochemickej interpretácie meraného odtoku identifikovať zóny a formy prítoku vody do tokov iba v malých povodiach nie väčších ako n × 10 0 km2 . Vo väčších povodiach sa dá odlíšiť iba ''nová voda'' (zrážky spadnuté priamo na povrch riečnej siete a povrchový odtok) a ''stará voda'' (zmes pôdnej vody a príspevku z rôznych vodonosných vrstiev).
In grasslands where organic and inorganic resources are alternating at scales of individual plants, the transient character is given to certain wetting properties of soil, which then become highly variable both in space and in time. The objective of presented study was to study wetting pattern within two soil horizons at 5-cm and 10-cm depths respectively and to examine how the wetting patterns relate to hydraulic conductivity determined by Minidisc infiltrometer at suction -2 cm, K(-2 cm). This characteristics is implicitly independent on antecedent soil water content (SWC) since it relates to steady infiltration phase but can be influenced by present soil water repellency (SWR). Field measurements were performed on July 27-28, 2010 on the grassland experimental site located near the village Sekule in Southwest Slovakia. The water drop penetration time (WDPT), SWC and tension Minidisc infiltration measurements were carried out on the 0.64 m2 plot in a regular 8 x 8 grid. The results showed that SWR and SWC influence each other and cause correlation between spatial patterns of studied soil wetting characteristics and between characteristics measured at the two soil depths. Further, it was found out, that calculation of K(-2 cm) according to Zhang may cause apparent correlation of K(-2 cm) with antecedent SWC, which is the artificial effect of sorptivity parameter in the equation on steady stage of infiltration process. This pseudocorrelation has disappeared after adopting of Minasny and McBratney (2000) approaches by calculation of K(-2 cm).
Soil compaction in agricultural areas inhibits plant root growth through increased mechanical resistance, altered water and nutrient supply. The main objective of this study was to evaluate spatial distribution of roots and its effect on water uptake of maize grown on field with subsoil compaction. Two treatments were examined: complex melioration consisting of deep loosening in combination with drainage and control without applied meliorations. Root observations were conducted on vertical and superposed horizontal planes covered with a 2 cm grid short after silking. Root distributions expressed as index of density and/or dry mass density were estimated down to 1m soil depth and with a distance to a plant base. For analysis of root distribution pattern on the horizontal planes, a Variance to Mean Ratio (VMR) test was applied. Soil water monitoring were conducted during the vegetation period. On the vertical planes, root densities were similar in the topsoil of both treatments, but the results were significantly higher in the subsoil of the meliorated one showing deeper allocation of root density. In contrast, the control had more squares with lots of roots (i.e. higher indexes) just at the top- subsoil boundary owing to bunching of roots in macropores. The horizontal planes in the control generally consisted larger areas without visible roots and thus great distances for water and nutrient transmission, especially in the subsoil. The estimated VMR also pointed toward different levels of root clustering. Consequently, an inhibited water extraction from the subsoil in the control, a delay in crop ontogenesis and a less biomass production was established during the observed period. and Zhutnenie poľnohospodárskej pôdy bráni rastu koreňov; je to spôsobené zvýšeným mechanickým odporom pôdy, a zníženým prítokom vody a živín. Cieľom tejto štúdie je zhodnotenie priestorovej variability koreňov, ich vplyvu na odber vody koreňmi kukurice na poli so zhutnenou podorničnou vrstvou. Boli hodnotené dva spôsoby obrábania: komplexná meliorácia pozostávajúca z hlbokého podrývania v kombinácii s drenážou a obrábanie (kontrola) bez melioračných zásahov. Identifikácia rozdelenia koreňov bola vykonaná vo vertikálnych a horizontálnych rovinách s 2-cm sieťou, krátko po metaní. Rozdelenie koreňov bolo vyjadrené ako index hustoty alebo ako hustota suchej biomasy koreňov do hĺbky 1 m; v horizontálnom smere až k susedným rastlinám. Bol použitý test ''Variance to Mean Ratio'' (VMR) na určenie rozdelenia koreňov v horizontálnom smere počas vegetačného obdobia. Hustota koreňov vrchnej vrstvy pôdy vo vertikálnej rovine bola podobná pre obidve varianty, ale pre meliorovanú pôdu boli hodnoty hustoty koreňov v podloží podstatne vyššie a korene zasahovali hlbšie. Ako protiklad, na kontrolnom pozemku bolo viac štvorcov s mnohými koreňmi (t.j. vyššie indexy) práve na hranici orničnej a podorničnej vrstvy, pre enormný rast koreňov v makropóroch. V horizontálnej rovine tento kontrolný pozemok obsahoval veľké oblasti bez viditeľných koreňov, a to znamená veľké vzdialenosti pre prenos vody a živín v podorničnej vrstve. Výsledky aplikácie VMR naznačujú tiež rozdielne úrovne zhlukov koreňov. Z toho vyplýva znížený odber vody koreňmi rastlín na kontrolnom pozemku, ako aj pomalšia ontogenéza a nižšia produkcia biomasy, ktorá bola identifikovaná počas sledovaného obdobia.
The aim of the investigation was assessment of spatial variability of the characteristics of snowpack, including the snow water equivalent (SWE) as the main hydrological characteristic of a seasonal snow cover. The study was performed in Khibiny Mountains (Russia), where snow density and snow cover stratigraphy were documented with the help of the SnowMicropen measurements, allowing to determine the exact position of the snow layers’ boundaries with accuracy of 0.1 cm. The study site was located at the geomorphologically and topographically uniform area with uniform vegetation cover. The measurement was conducted at maximum seasonal SWE on 27 March 2016. Twenty vertical profiles were measured along the 10 m long transect. Vertical resolution depended on the thickness of individual layers and was not less than 10 cm. The spatial variation of the measured snowpack characteristics was substantial even within such a homogeneous landscape. Bulk snow density variability was similar to the variability in snow height. The total variation of the snowpack SWE values along the transect was about 20%, which is more than the variability in snow height or snow density, and should be taken into account in analysis of the results of normally performed in operational hydrology snow course SWE estimations by snow tubes.
Monitoring of groundwater quality in Bareilly district, Uttar Pradesh, India, was performed at 10 different sites during the years 2005-2006. Obtained quality parameters were treated using principal component analysis (PCA) and cluster analysis (CA). The study shows usefulness of multivariate statistical techniques for evaluation and interpretation of groundwater quality data sets. and V letech 2005-2006 byla na deseti odběrných místech v regionu Bareilly, Uttar Pradesh, Indie sledována kvalita podzemní vody. Zjištěné kvalitativní parametry byly zpracovány pomocí analýzy hlavního prvku (PCA) a pomocí shlukové analýzy (CA). Studie dokládá vhodnost multivariačních statistických metod pro vyhodnocení a interpretaci změřených výsledků.