The spider mite Tetranychus urticae Koch is emerging as a major problem in Jatropha curcas cultivation. The goal of this study was to investigate the photosynthetic responses of Jatropha to spider mite infestation. Leaf CO2 assimilation rate, stomatal conductance, transpiration, intracellular CO2 concentration, and instantaneous carboxylation efficiency significantly decreased in mite-infested leaves compared with controls. Lower water content and specific leaf area of the mite-infested leaves were positively related to symptoms of wrinkling and curling. Leaf electrolyte leakage remained unchanged in the mite-infested leaves, revealing no effect on leaf membrane integrity. Leaves exhibited reductions in soluble protein and soluble sugar in association with photosynthetic impairment. Although decreases in photochemical activity and chlorophyll fluorescence parameters suggested damage to the photosynthetic apparatus, although there were no measurable reductions in chlorophyll or carotenoid contents associated with photosynthetic apparatus impairment. The decrease in the leaf CO2 assimilation rate was partially attributed to stomatal and metabolic limitations in the mite-infested leaves., M.-H. Hsu, C.-C. Chen, K.-H. Lin, M.-Y. Huang, C.-M. Yang, W.-D. Huang., and Obsahuje seznam literatury
Sargassum fusiforme, a species of brown seaweed with economic importance, inhabits lower intertidal zones where algae are often exposed to various stresses. In this study, changes in the photosynthetic performance of S. fusiforme under saline stress were investigated. The PSII performance in S. fusiforme significantly improved, when the thalli were exposed to 0% salinity, and remained high with prolonging treatment time. In contrast, the PSII activity declined considerably under salinities of 4.5 and 6%. The PSI activity did not change remarkably under saline stress, thus demonstrating higher tolerance to saline stress than PSII. In addition, the PSI activity could be also restored after saline treatments, when PSII was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. It might be as a result of changes in the NAD(P)H content in the thalli under saline stress. Our results suggested that PSI was much more tolerant to different saline stress than PSII in S. fusiforme. We demonstrated that S. fusiforme was much more tolerant to hyposaline than to hypersaline stress., S. Gao, L. Huan, X.-P. Lu, W.-H. Jin, X.-L. Wang, M.-J. Wu, G.-C. Wang., and Seznam literatury
Drought stress limits wheat growth and productivity. The response of wheat (Triticum aestivum L.) to different water supply conditions (well-watered and drought-stressed) and exogenous methyl jasmonate (MeJA; 0 and 0.25 μM) was studied. The application of MeJA enhanced wheat adaptability to drought stress by physiological and metabolic adjustments. Drought stress reduced net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), and water-use efficiency (WUE) in wheat. The application of exogenous MeJA decreased also gs and E, but stimulated WUE. Meanwhile, MeJA mitigated the decline of PN, gs, and WUE induced by drought stress and midday depression by 6-183%. Both drought stress and exogenous MeJA induced stomatal closure, which improved water status and delayed plant senescence. MeJA enhanced the activities of superoxide dismutase, peroxidase, catalase, and reduced malondialdehyde content. PN-PAR response curves showed that MeJA mitigated the decline of maximum PN, apparent quantum yield, and saturation irradiance, and the increase of compensation irradiance. Drought stress and exogenous MeJA increased dark respiration rate and showed an additive effect. These results indicated that 0.25 μM MeJA enhanced the photosynthesis under drought stress mainly by improving the water status and antioxidant capacity of wheat., C. Ma, Z. Q. Wang, L. T. Zhang, M. M. Sun, T. B. Lin., and Obsahuje bibliografii
Six genotypes of taro (Colocasia esculenta L. Schott) were evaluated under in vitro and in vivo polyethylene glycol (PEG-6000)-mediated osmotic stress conditions. A significant variation in growth response was observed among the taro genotypes under in vitro-induced stress conditions. In vivo results indicated a significant effect of osmotic stress on photosynthetic parameters, such as net photosynthetic rate, transpiration rate, stomatal conductance, stomatal resistance, internal CO2 concentration, carboxylation efficiency, and transpiration efficiency on the tested genotypes at the tuberization stage. Lesser variations in photosynthesis and higher accumulation of proline, phenols, and antioxidative enzymes, namely, superoxide dismutase and guaiacol peroxidase, were associated with yield maintenance under osmotic stress conditions. The genotypes DP-89, IGCOL-4, and Ramhipur showed a higher degree of tolerance towards osmotic stress with a minimum variation in the studied parameters. These genotypes could be lines of interest for intensification of breeding strategies to develop drought-tolerant plants., M. R. Sahoo, M. Dasgupta, P. C. Kole, A. Mukherjee., and Obsahuje bibliografii
Caffeine, a purine alkaloid, is reported to act both as an inducer or inhibitor to plant growth in various species. The aim of this study was to examine the effect of exogenous caffeine on tobacco (Nicotiana tabacum) plants, a plant that does not naturally synthesise caffeine. A hydroponic experiment was carried out in a growth chamber for 14 d using Hoagland’s solution supplemented with 0 (control), 25, 50, 100, 1,000; and 5,000 μM caffeine. None of the investigated caffeine concentrations significantly decreased the net photosynthetic rate except the highest concentrations of 1,000 and 5,000 μM. Light microscopy of thick-sectioned roots showed that 1,000 μM and 5,000 μM caffeine-treated plants possessed deformed epidermal cells, reduced number of cortical cells, and deformed vascular tissues with cells exhibiting thickened xylem walls as compared with control plants. Moreover, transmission electron micrographs of roots revealed that mitochondria and the plasma membrane were affected., R. Alkhatib, B. Alkhatib, L. Al-Eitan, N. Abdo, M. Tadros, E. Bsoul., and Obsahuje bibliografii
The present study revealed that Ginkgo biloba and Platanus occidentalis, the most abundant roadside trees in Seoul, grown under polluted environmental conditions, displayed lower contents of total chlorophyll (Chl), carotenoids (Car), and ascorbic acid (AsA) compared to the trees grown under clean conditions. The reduction in Chl, Car, and AsA contents was 59, 53, and 50%, respectively, in G. biloba, contrary to 26, 23, and 24%, respectively, in P. occidentalis. Furthermore, relative ion leakage and leaf temperature was higher in the trees grown under polluted conditions than in those grown under clean conditions. The increase in relative ion leakage and leaf temperature was 58 and 3% for G. biloba and 17 and 4% for P. occidentalis, respectively. Our results, therefore, highlighted the negative impact of urban environmental pollution on the physiological and biochemical parameters in roadside trees., H. N. You, S. Y. Woo, C. R. Park., and Seznam literatury
We examined the physiological and biochemical responses of two halophytic grasses with different photosynthetic pathways, Puccinellia tenuiflora (C3) and Chloris virgata (C4), to saline-alkaline stresses. Plants were grown at different Na2CO3 concentrations (from 0 to 200 mM). Low Na2CO3 (< 12.5 mM) enhanced seed germination and plant growth, whereas high Na2CO3 concentrations (> 100 mM) reduced seed germination by 45% in P. tenuiflora and by 30% in C. virgata. Compared to C. virgata, P. tenuiflora showed lower net photosynthesis, stomatal conductance, intercellular CO2 concentration, and water-use efficiency under the same treatment. C. virgata exhibited also relatively higher ATP content, K+ concentration, and the K+/Na+ ratio under the stress treatments implying that salt tolerance may be the main mechanism for salt resistance in this species. Our results demonstrated that the C. virgata was relatively more resistant to saline-alkaline stress than the co-occurring P. tenuiflora; both two species adapt to their native saline-alkaline habitat by different physiological mechanisms., C. Y. Guo, X. Z. Wang, L. Chen, L. N. Ma, R. Z. Wang., and Obsahuje bibliografii
Water stress is a major abiotic constraint leading to serious crop losses. Recently, in the Mediterranean region, water stress has become markedly sensed, especially in Citrus orchards. This study investigated the physiological responses of local sour orange (Citrus aurantium L.) clones to severe water stress. Water stress was applied by withholding irrigation during weeks, followed by a rewatering phase during three months. Under water stress, sour orange clones decreased their stomatal conductance, net photosynthetic rate, and transpiration rate. On the contrary, biomass was stable, especially in the Kliaa clone. In addition, reduced leaf water potentials (-3 MPa) and water contents were measured in most of the clones, except Kliaa which kept the highest water potential (-2.5 MPa). After rewatering, all clones recovered except of the Ghars Mrad (GM) clone. Ultrastructural observations of leaf sections by transmission electron microscopy did not reveal marked alterations in the mesophyll cells and chloroplast structure of Kliaa in comparison to the sensitive clone GM, in which palisade parenchyma cells and chloroplasts were disorganized. This contrasting behavior was mainly attributed to genetic differences as attested by molecular analysis. This study highlighted GM as the drought-sensitive clone and Kliaa as the tolerant clone able to develop an avoidance strategy based on an efficient stomatal regulation. Although a high percentage of polyembryony characterizes C. aurantium and justifies its multiplication by seeds, heterogeneous water-stress responses could be observed within sour orange plants in young orchards., A. Ben Salem-Fnayou, I. Belghith, M. Lamine, A. Mliki, A. Ghorbel., and Obsahuje bibliografii
This study aimed to determine the effects of plant growth-promoting rhizobacteria Bacillus subtilis JS on the growth and physiological changes of Populus euramericana and Populus deltoides x P. nigra. Poplar seedlings were treated with B. subtilis JS and their growth was monitored for up to 120 d. Three different types of treatments [control, B1 (B. subtilis:double-distilled water, 1:100, v/v), and B2 (1:50)] were established. B. subtilis JS enhanced seedling height by 62% and total biomass by 37% after 120 d. Physiologically, the photosynthetic rate increased by 54%, and the total chlorophyll (Chl) content, foliage nitrogen and phosphate content were significantly higher after treatment with B2 than that of the control. These results suggest that the total Chl content is directly related to not only the photosynthetic capacity of the foliage but also to the nitrogen content, indicating that the strain JS may promote the growth of poplar., J. H. Jang, S.-H. Kim, I. Khaine, M. J. Kwak, H. K. Lee, T. Y. Lee, W. Y. Lee, S. Y. Woo., and Obsahuje bibliografii
In the present study, the physiological efficiencies of 181 mini-core peanut accessions (genotypes) were evaluated according to variability in their physiological performance in the field during summer (2012). Genotypes were categorized into groups of high, medium, and low physiological activity. Thirty-four genotypes showed high net photosynthetic rate (PN > 33 μmol m-2 s-1), 28 genotypes exhibited high stomatal conductance (gs > 0.54 mmol m-2 s-1), 33 genotypes manifested high transpiration rate (E > 11.8 mmol m-2 s-1), 30 genotypes performed with high water-use efficiency (WUE > 3.8), 30 genotypes reached high chlorophyll SPAD values (SCMR > 40), and 35 genotypes showed high maximum quantum yield of PSII (Fv/Fm > 0.86). In addition, few genotypes showed high values for multiple physiological traits. A total of 54 genotypes exhibited higher values in two, 20 genotypes showed a high value in three, and in eight genotypes, high values occurred in four different physiological traits. Interestingly, only two genotypes, NRCG 14493 and 14507, showed high values for five different traits. Positive correlation was observed between gs and PN, E, and gs, and between PN and Fv/Fm, while WUE and E showed a negative correlation. The genotypes with high PN, gs, and WUE coupled with high SCMR and Fv/Fm could be used in peanut crop improvement programme for yield enhancement as well as stress tolerance., A. L. Singh, R. N. Nakar, K. Chakraborty, K. A. Kalariya., and Obsahuje bibliografii