Emerging evidence indicates that polychlorinated biphenyls (PCBs) are involved in the development of diabetes mellitus in the obese. The purpose of this study was to determine mechanisms by which PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl) could influence diet-induced obesity and insulin resistance during adipogenesis. Lineage of h-ADMSCs was differentiated either as control (differentiation medium only), or with lipid vehicle modeling high fat nutrition (NuTRIflex) or lipid free vehicle (dimethylsulfoxide) for 28 days with or without PCB 153 daily co-exposure (in three concentrations 0.1, 1, and 10 μM). Gene expression analyses were performed using RT-qPCR at days 4, 10, 21, 24, 28; p rotein l evels A kt a nd phosphorylated Akt (Phospho-Akt) by Western blot at days 4, and 21. PCB 153 treatment of h-ADMSCs only in lipid vehicle was associated with down regulation of key master genes of adipogenesis: PPARγ, SREBP-1, PPARGC1B, and PLIN2 during the whole process of differentiation; and with increased Akt and decreased Phospho-Akt protein level at day 21. We have shown that PCB 153, in concentration 0.1 μM, has a potential in lipid rich environment to modulate differentiation of adipocytes. Because European and U.S. adults have been exposed to PCB 153, this particular nutrient-toxicant interaction potentially impacts human obesity and insulin sensitivity., D. Mullerova, M. Pesta, J. Dvorakova, M. Cedikova, V. Kulda, P. Dvorak, V. Bouchalová, M. Kralickova, V. Babuska, J. Kuncova, J. Langmajerova, L. Muller., and Obsahuje bibliografii
Inflammation is a vital defense mechanism of living organisms. However, persistent and chronic inflammation may lead to severe pathological processes and evolve into various chronic inflammatory diseases (CID), e.g. rheumatoid arthritis, multiple sclerosis, multiple sclerosis, systemic lupus erythematosus or inflammatory bowel diseases, or certain types of cancer. Their current treatment usually does not lead to complete remission. The application of nanotherapeutics may significantly improve CID treatment, since their accumulation in inflamed tissues has been described and is referred to as extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS). Among nanotherapeutics, water-soluble polymer-drug conjugates may be highly advantageous in CID treatment due to the possibility of their passive and active targeting to the inflammation site and controlled release of active agents once there. The polymer-drug conjugate consists of a hydrophilic biocompatible polymer backbone along which the drug molecules are covalently attached via a biodegradable linker that enables controlled drug release. Their active targeting or bio-imaging can be achieved by introducing the cell-specific targeting moiety or imaging agents into the polymer conjugate. Here, we review the relationship between polymer conjugates and inflammation, including the benefits of the application of polymer conjugates in inflammation treatment, the anti-inflammatory activity of polymer drug conjugates and potential polymer-promoted inflammation and immunogenicity., E. Koziolová, K. Venclíková, T. Etrych., and Obsahuje bibliografii
The present review focuses on the description of the design, synthesis and physico-chemical and biological evaluation of polymer nanogels. Nanogels are robust swollen cross-linked polymer nanoparticles that can be used as highly efficient and biodegradable carriers for the transport of drugs in controlled drug delivery. In this article, various types of nanogels are described and methods for their preparation discussed. The possibility of using synthesized nanosystems for targeting are reviewed to show the potential of tailored structures to reach either solid tumor tissue or direct tumor cells. Finally, the methods for encapsulation or attachment of biologically active molecules, e.g. drugs, proteins, are described and compared., J. Kousalová, T. Etrych., and Obsahuje bibliografii
Silymarin and silybin are widely used for their hepatoprotective properties. Our previous studies confirm positive effect of silymarin on lipoprotein profile and lipid homeostasis. Advanced drug forms may improve the bioavailability of these compounds. In this study, we investigate the effects of silybin in different drug forms (standardized silybin, micronized silybin, and silybin in form of phytosomes) on dyslipidemia and glucose metabolism in hereditary hypertriglyceridemic (HHTg) rats. Male HHTg rats were divided into four groups of seven animals and were fed by experimental diets. Silybin significantly decreased serum level of triglycerides in groups of rats fed by standardized silybin and silybin in form of phytosomes compared to control group. Results show that silybin did not affect the total cholesterol level, but significantly increased the levels of HDL cholesterol in all groups of animals. Silybin in a standardized form had the highest hypotriglyceridemic effect. On the other hand, the micronized form has caused the highest increase of protective HDL and most significantly decreased glucose and insulin levels. Our results suggest that silybin is probably responsible for some positive properties of silymarin. Subsequent dose-dependent studies of silybin action may reveal the intensity of its positive effects on lipid and glucose parameters., M. Poruba, Z. Matušková, L. Kazdová, O. Oliyarnyk, H. Malínská, I. Tozzi di Angelo, R. Večeřa., and Obsahuje bibliografii
Idiopathic pes equinovarus (clubfoot) is a congenital deformity of the foot and lower leg defined as a fixation of the foot in plantar flexion, adduction, supination and varus. The deformity does not affect only the foot position, which is usually investigated by radiography, CT, micro-CT, MRI or ultrasound but logically influence the whole gait biomechanics. It is supposed, that clubfoot belongs to a group of fibroproliferative disorders whose origin and multi- hierarchical effect remain unknown. It has been suggested that fibroblasts and growth factors may be involved. To gain a more global view, direct analysis of the protein composition of extra cellular matrix, a proteomic approach was used. At present two principle methods are mostly used for the treatment of clubfoot: physiotherapy and the Ponseti method. The determination of the general biological and biomechanical parameters for various regio ns of the clubfoot can potentially help in the understanding of the mechanisms participating on this serious anomaly and thus contribute to the development of the more efficient therapeutic approach. This review summarizes the present knowledge on the poss ible pathogenetic mechanisms participating in the development of the clubfoot and their possible relation to the new therapeutic approaches., M. Ošťádal, J. Lišková, D. Hadraba, A. Eckhardt., and Obsahuje bibliografii
In the central nervous system (CNS), monocarboxylate transporter 1 (MCT1) is expressed in astrocytes and endothelial cells but also in oligodendroglia. Oligodendroglia support neurons and axons through lactate transportation by MCT1. Limited information is available on the MCT1 expression changes in candidate cells in the developing rat brain, especially in corpus callosum which is the most vulnerable area in demyelinating diseases. In the present study, we investigated the expression pattern of MCT1 during postnatal development in the rat corpus callosum using immunofluorescene staining, Western blotting analysis and RT-PCR. We reported that MCT1 gene and protein were consistently expressed in the rat corpus callosum from birth to adult. MCT1/CNPase and MCT1/GFAP immunofluorescence staining demonstrated that most of MCT1 positive cells were co-labeled with cyclic nucleotide 3′ phosphodiesterase (CNPase) in rat corpus callosum from P7 to adult, whereas MCT1+/GFAP+ cells preserve the dominate position before P7. Moreover, there were significant associations between the expression of MCT1 protein and the expression of myelin basic protein (MBP) (correlation coefficient: r=0.962, P=0.009) from P7 to adult. Similarly, the MCT1 mRNA expression was also significantly associated with MBP mRNA expression (r=0.976, P=0.005). Our results are proposing that in the developing brain white matter, MCT1 is predominately expressed in oligodendrocyte though it mainly expressed in astrocyte in early postnatal, which indicate that MCT1 may involve in the oligodendrocyte development and myelination., F. Dong, Y. Liu, Z. Zhang, R. Guo, L. Ma, X. Qu, H. Yu, H. Fan, R. Yao., and Obsahuje bibliografii
Neurodegenerative disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are increasing in prevalence. Currently, there are no effective and specific treatments for these disorders. Recently, positive effects of the orexigenic hormone ghrelin on memory and learning were demonstrated in mouse models of AD and PD. In this study, we tested the potential neuroprotective properties of a stable and long-lasting ghrelin analog, Dpr3ghrelin (Dpr3ghr), in SH-SY5Y neuroblastoma cells stressed with 1.2 mM methylglyoxal (MG), a toxic endogenous by-product of glycolysis, and we examined the impact of Dpr3ghr on apoptosis. Pre-treatment with both 10-5 and 10-7 M Dpr3ghr resulted in increased viability in SH-SY5Y cells (determined by MTT staining), as well as reduced cytotoxicity of MG in these cells (determined by LDH assay). Dpr3ghr increased viability by altering pro-apoptotic and viability markers: Bax was decreased, Bcl-2 was increased, and the Bax/Bcl-2 ratio was attenuated. The ghrelin receptor GHS-R1 and Dpr3ghr-induced activation of PBK/Akt were immuno-detected in SH-SY5Y cells to demonstrate the presence of GHS-R1 and GHS-R1 activation, respectively. We demonstrated that Dpr3ghr protected SH-SY5Y cells against MG-induced neurotoxicity and apoptosis. Our data suggest that stable ghrelin analogs may be candidates for the effective treatment of neurodegenerative disorders., A. Popelová, A. Kákonová, L. Hrubá, J. Kuneš, L. Maletínská, B. Železná., and Seznam literatury
n previous studies, one of the systolic time intervals - preejection period (PEP) - was used as an index of sympathetic activity reflecting the cardiac contractility. However, PEP could be also influenced by several other cardiovascular variables including preload, afterload and diastolic blood pressure (DBP). The aim of this study was to assess the behavior of the PEP together with other potentially confounding cardiovascular system characteristics in healthy humans during mental and orthostatic stress (head-up tilt test - HUT). Forty-nine healthy volunteers (28 females, 21 males, mean age 18.6 years (SD=1.8 years)) participated in the study. We recorded finger arterial blood pressure by volume-clamp method (Finome ter Pro, FMS, Netherlands), PEP, thoracic fluid content (TFC) - a measure of preload, and cardiac output (CO) by impedance cardiography (CardioScreen ®2000, Medis, Germany). Systemic vascular resistance (SVR) - a measure of afterload - was calculated as a ratio of mean arterial pressure and CO. We observed that during HUT, an expected decrease in TFC was accompanied by an increase of PEP, an increase of SVR and no significant change in DBP. During mental stress, we observed a decrease of PEP and an increase of TFC, SVR and DBP. Correlating a change in assessed measures (delta values) between mental stress and previous supinerest, we found that ΔPEP correlated negatively with ΔCO and positively with ΔSVR. In orthostasis, no significant correlation between ΔPEP and ΔDBP, ΔTFC, ΔCO, ΔMBP or ΔSVR was found. We conclude that despite an expected increase of sympathetic activity during both challenges, PEP behaved differently indicating an effect of other confounding factors. To interpret PEP values properly, we recommend simultaneously to measure other variables influencing this cardiovascular measure., J. Krohova, B. Czippelova, Z. Turianikova, Z. Lazarova, I. Tonhajzerova, M. Javorka., and Obsahuje bibliografii
In modern societies, living organisms are exposed daily to multiform pollution from industrial chemical products. Some of these substances have been shown to affect the endocrine system, and have been termed endocrine disruptors (EDs). Bisphenol A (BPA), which can leach from plastics, and parabens, used in cosmetic products, are among the most well-studied. Prenatal development is a vulnerable phase of human life, and disruptions during this period may have lifelong consequences. Since EDs are known to cross the placental barrier and BPA may accumulate in the fetus, "BPA-free" products have been introduced to the market. However, such products often contain alternative bisphenols (e.g. BPS, BPF) that have not yet been extensively examined or regulated. Moreover, alternative bisphenols often occur together with BPA. The human organism is thus exposed to a mixture of EDs, some of which can have additive or synergic effects. Recent findings have also shown that paraben exposure can alter bisphenol pharmacokinetics. Taking into account the widespread occurrence of various EDs and the potential multiplicity of their effects, doses of EDs currently considered safe may not actually be as safe as they appear, especially during pregnancy., L. Kolatorova, M. Duskova, J. Vitku, L. Starka., and Obsahuje bibliografii
Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H2) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H2 rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H2 reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H2 may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention., J. Slezák, B. Kura, K. Frimmel, M. Zálešák, T. Ravingerová, C. Viczenczová, Ľ. Okruhlicová, N. Tribulová., and Obsahuje bibliografii