5-aminolevulinic acid (ALA) is an essential precursor for the biosynthesis of tetrapyrrols such as heme and chlorophyll (Chl). Previous studies have focused mainly on promotive effects of exogenous ALA on plant growth, while regulatory mechanisms affecting Chl biosynthesis have been only partially discussed. In the present study, the ameliorative role of exogenous ALA was investigated on Chl and endogenous ALA biosynthesis in six-day-old etiolated oilseed rape (Brassica napus L.) cotyledons during the de-etiolation stage. We showed that exogenously applied ALA of a low dosage enhanced Chl and ALA accumulation in cotyledons, while 600 µM ALA treatment inhibited the accumulation of Chl and ALA severely. However, the gene expression levels of glutamyl-tRNA reductase (HEMA) and glutamate-1-semialdehyde aminotransferase (GSA) were not affected under either low or high ALA concentrations. Furthermore, water deficit induced by polyethylene glycol 6000 (PEG) suppressed the Chl and ALA accumulation in cotyledons, while the inhibition was partially alleviated in the cotyledons pretreated with ALA. The decrease in Chl biosynthesis induced by PEG stress was assumed to be related to downregulation of HEMA and Mg-chelatase ChlH (ChlH), and upregulation of ferrochelatase (FC) genes. Moreover, exogenously applied ALA did not show any effect on the expression of Chl synthesis-related genes under the PEG treatment. These results showed a difference in suppressing ALA synthesis due to the high concentration of ALA and PEG. Exogenously applied ALA did not affect the expression of HEMA and GSA, thus exogenous ALA regulated Chl synthesis not via the regulation of transcriptional level in ALA biosynthesis. However, the inhibition in Chl and endogenous ALA accumulation by the PEG treatment may be attributed to downregulation of HEMA and ChlH, and upregulation of FC., D. Liu, D. D. Kong, X. K. Fu, B. Ali, L. Xu, W. J. Zhou., and Seznam literatury
Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. Our experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, and 1.00 mM) as a foliar spray would protect citrus seedlings (Valencia orange/Bakraii) subjected to salt stress (0, 25, 50, and 75 mM NaCl). Growth parameters, leaf chlorophyll (Chl) content, relative water content (RWC), maximal quantum yield of PSII photochemistry (Fv/Fm), and gas-exchange variables were negatively affected by salinity. In addition, leaf electrolyte leakage (EL) and proline content increased by salinity treatments. Application of SA increased net photosynthetic rate and proline content in salt stressed plants and may have contributed to the enhanced growth parameters. SA treated plants had greater Chl content and RWC compared with untreated plants when exposed to salt stress. Fv/Fm ratio and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced EL compared to untreated plants, indicating possible protection of integrity of the cellular membrane. It appeared that the best ameliorative remedies of SA were obtained when Valencia orange/Bakraii seedlings were sprayed by 0.50 and 1.00 mM solutions. Overall, the adverse effects of salt stress could be alleviated by exogenous application of SA., D. Khoshbakht, M. R. Asgharei., and Obsahuje seznam literatury
A greenhouse experiment was conducted to examine the effect of foliar application of triacontanol (TRIA) on two cultivars (cv. S-24 and MH-97) of wheat (Triticum aestivum L.) at different growth stages. Plants were grown in full strength Hoagland’s nutrient solution under salt stress (150 mM NaCl) or control (0 mM NaCl) conditions. Three TRIA concentrations (0, 10, and 20 μM) were sprayed over leaves at three different growth stages, i.e. vegetative (V), boot (B), and vegetative + boot (VB) stages (two sprays on same plants, i.e., the first at 30-d-old plants and the second 78-d-old plants). Salt stress decreased significantly growth, net photosynthetic rate (PN), transpiration rate (E), chlorophyll contents (Chl a and b), and electron transport rate (ETR), while membrane permeability increased in both wheat cultivars. Stomatal conductance (gs) decreased only in salt-sensitive cv. MH-97 under saline conditions. Foliar application of TRIA at different growth stages enhanced significantly the growth, PN, gs, Chl a and b contents, and ETR, while membrane permeability was reduced in both cultivars under salt stress. Of various growth stages, foliar-applied TRIA was comparatively more effective when it was applied at V and VB stages. Overall, 10 μM TRIA concentration was the most efficient in reducing negative effects of salinity stress in both wheat cultivars. The cv. S-24 showed the better growth and ETR, while cv. MH-97 exhibited higher nonphotochemical quenching. and S. Perveen, M. Shahbaz, M. Ashraf.
The steady-state oxygen evolution rate was previously shown to be stimulated by the disaccharide trehalose in PSII suspension. Here we showed a similar increase in the rate of oxygen evolution in PSII core complexes from spinach in solution and in proteoliposomes in the presence of trehalose. Using direct electrometrical technique, we also revealed that trehalose had no effect on the kinetics of electron transfer from Mn to redox-active-tyrosyl radical, YZ (S1 - S2 transition), while it accelerated the kinetics of electrogenic proton transport during S2 - S3 and S4 - S0 transitions of the wateroxidizing complex (WOC) induced by the first, second, and third laser flashes in dark-adapted PSII samples. These observations imply that the effect of trehalose occurrs due to its interaction with the WOC., M. D. Mamedov, E. S. Nosikova, L. A. Vitukhnovskaya, A. A. Zaspa, A. Yu. Semenov., and Obsahuje bibliografické odkazy
Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments, all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation, while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by stress conditions. and M. M. Tirani, F. Nasibi, Kh. M. Kalantari.
Elevated atmospheric CO2 concentration [CO2] and the change of water distribution in arid and semiarid areas affect plant physiology and ecosystem processes. The interaction of elevated [CO2] and drought results in the complex response such as changes in the energy flux of photosynthesis. The performance of photosystem (PS) II and the electron transport were evaluated by using OJIP induction curves of chlorophyll a fluorescence and the PN-Ci curves in the two-factor controlled experiment with [CO2] of 380 (AC) or 750 (EC) [μmol mol-1] and water stress by 10% polyethylene glycol 6000. Compared to water-stressed maize (Zea mays L.) under AC, the EC treatment combined with water stress decreased the number of active reaction centers but it increased the antenna size and the energy flux (absorbed photon flux, trapping flux, and electron transport flux) of each reaction center in PSII. Thus, the electron transport rate was enhanced, despite the indistinctively changed quantum yield of the electron transport and energy dissipation. The combination of EC and the water-stress treatment resulted in the robust carboxylation rate without elevating the saturated photosynthetic rate (Pmax). This study demonstrated that maize was capable of transporting more electrons into the carboxylation reaction, but this could not be used to increase Pmax under EC., Y. Z. Zong, W. F. Wang, Q. W. Xue, Z. P. Shangguan., and Obsahuje bibliografii
Increasing human and industrial activities lead to heavy metal pollution. Heavy metal chromium (Cr) is considered to be a serious environmental contaminant for the biota. Phytotoxic effects of Cr were studied in wheat plants. Growth parameters were largely inhibited as a result of disturbances in the plant cell metabolism in response to Cr toxicity. Chromium toxicity led to decline in a number of active reaction centres of PSII, rate of electron transport, and change in PSII heterogeneity. Chromium did not cause any change in heterogeneity of the reducing side. A significant change in antenna size heterogeneity of PSII occurred in response to Cr toxicity. Chromium seems to have extensive effects on the light harvesting complex of PSII., S. Mathur, H. M. Kalaji, A. Jajoo., and Obsahuje seznam literatury
a1_Photosystem (PS) II particles retaining a high rate of O2 evolution were isolated from the mesophilic filamentous cyanobacterium, Spirulina platensis. To achieve high production of PSII complexes in the cells, irradiance from halogen incandescent lamps was used. Disruption of cells by vibration of glass beads proved to be the most suitable procedure for isolation of thylakoid membranes. The selectivity of detergents for PSII particle preparation rose in the order of Triton X-100 < decyl-β-D-glucopyranoside < dodecyldimethyl-aminooxide < n-heptyl-β-D-thioglucoside < N-dodecyl-N,N-dimethylammonio-3-propane sulphonate < n-octyl-β-thioglycoside < octylglucoside < n-dodecyl-β-D-maltoside. The last four detergents yielded extracts, from which pure PSII particles not contaminated by PSI complexes could be obtained by sucrose-gradient centrifugation (20-45%) at the 43% sucrose level. We assumed both the acceptor and donor sides of the isolated n-dodecyl-β-D-maltoside (DM) particles to be intact due to high oxygen production by DM particles [1,500 meq(e-) mol-1 (Chl) s-1] achieved in the presence of all artificial acceptors tested. The PSII particle fraction from the sucrose gradient was used with immobilized metal (Cu2+) affinity chromatography (IMAC) for the preparation of the PSII core complex. By washing the column with a MES buffer containing MgCl2 and CaCl2, the phycobiliproteins were stripped off. The PSII core complex was eluted in a buffer containing 1% DM, mannitol, MgCl2, NaCl, CaCl2, and ɛ-aminocaproic acid. SDS-PAGE of the core complex provided pure bands of D1 and D2 proteins and PsbO protein from thylakoid membrane, which were used to raise polyclonal antibodies in rabbits. These antibodies recognized D1 and D2 not only as monomers of 31 and 32 kDa proteins, but also as heterodimers of D1, D2 corresponding to the band of 66 kDa on SDS-PAGE. This was in contrast to antibodies of, a2_synthetic determinants, which reacted only with the monomers of D1 and D2 proteins. These negative reactions against heterodimers of D1, D2 supported the hypothesis that dimeric forms of PSII reaction centre proteins have a C-terminal sequence sterically protected against a reaction with specific antibodies., and E. Šetlíková ... [et al.].
Extreme conditions, such as drought, high temperature, and solar irradiance intensity, are major factors limiting growth and productivity of grapevines. In a field experiment, kaolin particle film application on grapevine leaves was examined during two different summer conditions (in 2012 and 2013) with the aim to evaluate benefits of this practice against stressful conditions hindering photochemical processes. We used chlorophyll a fluorescence to investigate attached leaves. Two months after the application, during the hottest midday, the kaolin-treated plants showed by the JIP test significantly higher quantum yield of PSII photochemistry, flux ratios, maximum trapped excitation flux of PSI, absorption flux, electron transport flux, maximum trapped energy flux per cross section, and performance index than plants under control conditions in the warmer year. On the contrary, the treated plants showed a lower initial slope of relative variable fluorescence and a decrease in the absorption and electron transport per cross section. The JIP test showed higher efficiency of PSII in the plants treated with kaolin mainly in 2013 (higher temperature and drought). Our results supported the hypothesis that the accumulation of active PSII reaction centres was associated with decreased susceptibility to photoinhibition in the kaolin-treated plants and with more efficient photochemical quenching. Grapevines in the Douro Region seems to profit from the kaolin application., L.-T. Dinis, H. Ferreira, G. Pinto, S. Bernardo, C. M. Correia, J. Moutinho-Pereira., and Obsahuje seznam literatury
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (P N), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, P N, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity., R. Q. Liu, X. J. Xu, S. Wang, C. J. Shan., and Obsahuje seznam literatury