Our main objective was to test whether chronic orthostatic body position induces network changes in the saphenous vein superficial tributary system of the rat. Fourteen male Sprague-Dawley rats were kept in tilted tube cages (45º head-up position) for two weeks to induce chronic gravitational load to their leg veins. Ten animals housed in normal cages and four animals kept in horizontally positioned tube cages served as controls. The whole superficial network of the left saphenous vein was microprepared surgically under anesthesia, superfused with saline and observed under a videomicroscope, while normal flow and pressure were maintained in the lumen. Branching angles, lengths of venous segments and their diameters were measured offline from digitized images using special image-analyzing software. Several branching angles at the popliteal confluence were significantly reduced by 12.5-15.8 %. The in vivo diameter of the main branch (936±34 vs. 805±44 µm) and of one of the popliteal tributaries (776±38 vs. 635±36 µm) increased (p<0.05), comparing vessels from tilted animals with those from normal controls. Maintaining the animals in horizontal tube cages did not induce the above alterations. The increased diameters and reduced branching angles of the saphenous vein network observed are adaptive responses of the venous network to a long-term gravitational load., M. Lóránt, G. L. Nádasy, G. Raffai, E. Monos., and Obsahuje bibliografii
Remote ischemic preconditioning (RIP)-induced protection of myocardial energetics was well documented on the level of tissue, but data concerning the involvement of mitochondria were missing. We aimed at the identification of changes in membrane properties and respiratory functions induced in rat heart mitochondria by RIP. Experiments were performed on 46 male Wistar rats divided into control and RIP-treated groups of 21 animals each. Blood flow in the occluded area was recorded by MRI angiography in four animals. RIP protocol comprised of three successive 5-min occlusions each followed by 5-min reperfusions of descending branches of the right hind limb femoral artery. The efficacy of RIP was evaluated as the extent of RIP-induced protection against damage to the functions of mitochondria isolated by differential centrifugation after 30-min global ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Assessments: mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC, mitochondrial respiration with the Oxygraph-2k (Oroboros). Results revealed that RIP was affecting the mitochondria. The immediate protection conferred by RIP involves beneficial and prognostically significant effects: a total elimination of ischemia/reperfusion-induced depression of mitochondrial membrane fluidity and a trend for better preservation of mitochondrial state 3 respiration., M. Ferko, I. Kancirová, M. Jašová, S. Čarnická, M. Muráriková, I. Waczulíková, Z. Sumbalová, J. Kucharská, O. uličná, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
Remote ischemic preconditioning (RIPC) is a novel strategy of protection against ischemia-reperfusion (IR) injury in the heart (and/or other organs) by brief episodes of non-lethal IR in a distant organ/tissue. Importantly, RIPC can be induced noninvasively by limitation of blood flow in the extremity implying the applicability of this method in clinical situations. RIPC (and its delayed phase) is a form of relatively short-term adaptation to ischemia, similar to ischemic PC, and likely they both share triggering mechanisms, whereas mediators and end-effectors may differ. It is hypothesized that communication between the signals triggered in the remote organs and protection in the target organ may be mediated through substances released from the preconditioned organ and transported via the circulation (humoral pathways), by neural pathways and/or via systemic anti-inflammatory and antiapoptotic response to short ischemic bouts. Identification of molecules involved in RIPC cascades may have therapeutic and diagnostic implications in the management of myocardial ischemia. Elucidation of the mechanisms of endogenous cardioprotection triggered in the remote organ could lead to the development of diverse pharmacological RIPC mimetics. In the present article, the authors provide a short overview of RIPC-induced protection, proposed underlying mechanisms and factors modulating RIPC as a promising cardioprotective strategy., T. Ravingerova, V. Farkasova, L. Griecsova, S. Carnicka, M. Murarikova, E. Barlaka, F. Kolar, M. Bartekova, L. Lonek, J. Slezak, A. Lazou., and Obsahuje bibliografii
Akt kinase regulates numerous cell functions including glucose metabolism, cell growth, survival, protein synthesis, and control of local hemodynamics. mTOR is one of down-stream effectors of Akt involved in the initiation of protein translation. However, renal Akt signaling in Type 1 diabetes (DM) in vivo, in particular under the conditions reflecting differences in metabolic control, has received less attention. Renal cortical activity and expression of Akt and mTOR (kinase assay, western blotting) were determined in streptozotocin-diabetic rats (D) with different levels of glycemic control (blood glucose 22.0± 1.0, 13.4±1.5, 8.1±0.4 mmol/l, p<0.05 between the groups), achieved by varying insulin treatment (0,4 and 12 IU/day), and in control rats with (C4) or without (C) chronic insulin administration. Renal Akt activity was reduced in D rats without insulin treatment and severe hyperglycemia (D-0, -62 %, p<0.01 vs. C), partially restored in moderately hypergly cemic rats (D-4, -30 %, p<0.05 vs. C), and normalized in D rats with intensive insulin and tight metabolic control (D-12). Expression of active mTOR paralleled Akt activity in D-0 (-51 %, p<0.01 vs. C), but not in D-4 and D- 12 that demonstrated increases in active mTOR (+55 %, +80 % resp., p<0.05) as compared to C. Moreover, insulin activated renal Akt (+82 %, p<0.01), but not mTOR in C4. In conclusion, glycemic control and intensity of insulin treatment are important modulators of renal Akt and mTOR activity in diabetes. While Akt activity is reversible by tight metabolic control, combination of hyperglycemia and insulin treatment resulted in enhancement of mTOR activity. In addition to Akt, other signaling pathways likely contribute to regulation of renal mTOR activity in diabetes., J. Ždychová, J. Veselá, L. Kazdová, R. Komers., and Obsahuje bibliografii a bibliografické odkazy
Previous investigations revealed that most of the fluid regulating hormones showed no consistent relationship to the hypoxic diuretic response (HDR). In this study we examined if adrenomedullin (AM), a hypoxia-mediated diuretic/natriuretic peptide is connected to HDR. Thirty-three persons were examined at low altitude (LA), on the third exposure day at 3440 m (medium altitude, MA) and on the fourteenth day at 5050 m (high altitude, HA). Nocturnal diuresis rose from 460 ml [interquartile range 302 ml] at LA to 560 [660] ml at MA to 1015 [750] ml at HA (p<0.005). Sodium excretion was similar at LA and MA (41.8 [27.0] vs. 41.4 [28.4] mM) and increased to 80.2 [29.1] mM at HA (p<0.005). Urinary AM excretion was 7.9 [3.9] at LA, 7.5 [5.7] pM at MA, and increased to 10.5 [5.1] pM (p<0.05) at HA. Urinary AM excretion was correlated to diuresis (r=0.72, p<0.005) and sodium excretion (r=0.57, p<0.005). Plasma AM concentration rose from 16.4 [3.1] to 18.8 [4.9] pM/l at MA (p<0.005) and to 18.3 [4.3] pM/l at HA (p<0.005). Plasma AM concentration and urinary AM excretion were not correlated, neither were plasma AM concentration and diuresis or natriuresis. Our data suggest the involvement of increased renal AM production in the pathophysiology of high altitude fluid and sodium loss., B. Haditsch, A. Roessler, H. G. Hinghofer-Szalkay., and Obsahuje bibliografii a bibliografické odkazy
The relationship between obesity and renal lesions, especially in low estrogen levels, has been less documented. The aim of this study was to assess the renal changes in diet-induced obesity in ovariectomized rats. Wistar rats were ovariectomized or shamoperated and divided into four groups: sham-operated rats fed a standard diet (SSD); ovariectomized rats fed a standard diet (OSD); sham-operated rats fed a high-fat diet (SHFD); ovariectomized rats fed a high-fat diet (OHFD). Body weight and blood pressure were measured weekly. The rats were killed 24 weeks after initiation of standard or high-fat diet treatment, the kidneys were removed for immunohistochemical and histological studies. Blood and urine samples were collected to quantify sodium, potassium and creatinine. OHFD rats presented increases in visceral adipose tissue, serum insulin levels, blood pressure and proteinuria, and a decrease in fractional excretion of sodium as well. Histological and morphometric studies showed focal alterations in the renal cortex. Expression of macrophages, lymphocytes, nuclear factor-kappa B (NF-B), Proliferating Cell Nuclear Antigen (PCNA), angiotensin II (ANG II) and vimentin was greater in OHFD rats than in control rats. Thus, these results demonstrate that the high-fat diet in ovariectomized rats promoted renal function and structure changes, renal interstitial infiltration of mononuclear cells and increased expression of ANG II and NF-κB., L. S: B. Amaral, J. A. Silva, T. M. Trindade, W. B. D. Ribas, C. L. Macedo, T. M. Coimbra, N. O. Belo, A. C. M. Magalhães, T. J. Soares., and Obsahuje bibliografii
Renin-angiotensin system (RAS) plays a key role in the regulation of renal function, volume of extracellular fluid and blood pressure. The activation of RAS also induces oxidative stress, particularly superoxide anion (O2-) formation. Although the involvement of O2- production in the pathology of many diseases is known for long, recent studies also strongly suggest its physiological regulatory function of many organs including the kidney. However, a marked accumulation of O2- in the kidney alters normal regulation of renal function and thus may contribute to the development of salt-sensitivity and hypertension. In the kidney, O2- acts as vasoconstrictor and enhances tubular sodium reabsoption. Nitric oxide (NO), another important radical that exhibits opposite effects than O2-, is also involved in the regulation of kidney function. O2- rapidly interacts with NO and thus, when O2- production increases, it diminishes the bioavailability of NO leading to the impairment of organ function. As the activation of RAS, particularly the enhanced production of angiotensin II, can induce both O2- and NO generation, it has been suggested that physiological interactions of RAS, NO and O2- provide a coordinated regulation of kidney function. The imbalance of these interactions is critically linked to the pathophysiology of salt-sensitivity and hypertension., L. Kopkan, L. Červenka., and Obsahuje seznam literatury
The influence of renal nerves on the effects of concurrent NO synthase inhibition (10 mg kg-1 b.w. i.v. L-NAME) and ETA/ETB receptor inhibition (10 mg kg-1 b.w. i.v. bosentan) on renal excretory function and blood pressure in conscious spontaneously hypertensive rats (SHR) was investigated. L-NAME increased blood pressure, urine flow rate, fractional excretion of sodium, chloride and phosphate in both normotensive Wistar rats and SHR with intact renal nerves (p<0.01). GFR or RBF did not change in any of the groups investigated. The effects of L-NAME on renal excretory function were markedly reduced by bosentan and the values returned to control level in the normotensive rats, while in SHR the values were reduced by bosentan, but they remained significantly elevated as compared to control level (p<0.05). The hypertensive response induced by L-NAME in SHR is partially due to activation of endogenous endothelins, but it does not depend on renal nerves. Chronic bilateral renal denervation abolished the effect of L-NAME on sodium and chloride excretion in normotensive rats, whereas it did not alter this effect in SHR. The participation of endogenous endothelins in changes of renal excretory function following NO synthase inhibition is diminished in SHR as compared to Wistar rats., R. Girchev, P. Markova., and Obsahuje bibliografii a bibliografické odkazy
Varied causative and risk factors can lead to cardiac dysfunction. Cardiac dysfunction often evolves into heart failure by cardiac remodeling due to autonomic nervous system disturbance and neurohumoral abnormalities, even if the detriment factors are removed. Renal sympathetic nerve activity plays a pivotal regulatory role in neurohumoral mechanisms. The present study was designed to determine the therapeutic eff ects of renal sympathetic denervation (RSD) on cardiac dysfunction, fibrosis, and neurohumoral response in transverse aortic constriction (TAC) rats with chronic pressure overload. The present study demonstrated that RSD attenuated myocardial fibrosis and hypertrophy, and structural remodeling of the left atrium and ventricle, up -regulated cardiac β adrenoceptor (β -AR, including β 1 AR and β 2 AR) and sarco -endoplasmic reticulum Ca 2+ -ATP ase (SERCA) while down -regulated angiotensin II type 1 receptor (AT 1 R), and decreased plasma B -type natriuretic peptide (BNP), norepinephrine (NE) , angiotensin II (Ang II), and arginine vasopressin (AVP) levels in TAC rats with chronic pressure overload. We conclude that RSD attenuates myocardial fibrosis, the left atrial enlargement, and the left ventricular wall hypertrophy; inhibits the overdrive of the sympathetic ner vous system (SNS), renin- angiotensin -aldosterone system (RAAS), and AVP system in TAC rats with chronic pressure overload . RSD could be a promising non -pharmacological approach to control the progression of cardiac dysfunction., Z.-Z. Li, H. Jiang, D. Chen, Q. Liu, J. Geng, J.-Q. Guo, R.-H. Sun, G.-Q. Zhu, Q.-J. Shan., and Obsahuje bibliografii
Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ETA) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ETA receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ETA blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ETA antagonists, at least under certain pathological conditions., I. Vaněčková, S. Hojná, M. Kadlecová, Z. Vernerová, L. Kopkan, L. Červenka, J. Zicha., and Seznam literatury