Hypoxia-inducible factor-1α (HIF-1α) transcriptionally regulates expression of several target genes in protecting tissues against hypoxia. With hypoxic stress, vascular endothelial growth factor (VEGF) is a signal protein produced by cells and further contributes to improvement of vascular functions and restoring the oxygen supply to tissues. In this current study, we first hypothesized that the protein levels of HIF-1α and VEGF are reduced in skeletal muscles of plateau animals [China Qinghai- Tibetan plateau pikas (ochotona curzoniae)] in response to hypoxia as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. We further hypothesized that HIF-1α plays a role in regulating expression of VEGF in skeletal muscle. Note that HIF-1α and VEGF were determined by using two-site immunoenzymatic assay (ELISA) methods. Our results demonstrated that hypoxic stress induced by exposure of lower O2 (6 h) significantly increased the levels of HIF-1α and VEGF in the oxidative and glycolytic muscles of SD rats and pikas (P<0.05 vs. normoxic conditions). Notably, the increases in HIF-1α and VEGF were significantly less in pikas (P<0.05, vs. SD controls) than in SD rats. In addition, a linear relationship was observed between amplified HIF-1α and VEGF in oxidative muscle (r=0.76 and P<0.01) and glycolytic muscle (r=0.72 and P<0.01) and inhibiting HIF-1α significantly decreased expression of VEGF induced by hypoxic stress in skeletal muscles (P<0.05). Overall, our findings suggest that (1) responsiveness of HIF-1α and VEGF in skeletal muscles to hypoxic stress is blunted in plateau animals, and (2) HIF-1α has a regulatory effect on VEGF under hypoxic environment., H.-C. Xie, J.-P. He, J.-F. Zhu, J.-G. Li., and Obsahuje bibliografii
Accumulation of adipose tissue in lower body lowers risk of cardiovascular and metabolic disorders. The molecular basis of this protective effect of gluteofemoral depot is not clear. The aim of this study was to compare the profile of expression of inflammation-related genes in su bcutaneous gluteal (sGAT) and abdominal (sAAT) adipose tissue at baseline and in response to multiphase weight-reducing dietary intervention (DI). 14 premenopausal healthy obese women underwent a 6 months’ DI consisting of 1 month very-low-calorie-diet (VLCD), subsequent 2 months’ low-calori e-diet and 3 months’ weight maintenance diet (WM). Paired samples of sGAT and sAAT were obtained before and at the end of VLCD and WM periods. mRNA expression of 17 genes (macrophage markers, cytokines) was measured using RT-qPCR on chip-platform. At baseline, there were no differences in gene expression of macrophage markers and cytokines between sGAT and sAAT. The dynamic changes induced by DI were similar in both depots for all genes except for three cytokines (IL6, IL10, CCL2) that differed in their response during weight maintenance phase. The results show that, in obese women, there are no major differences between sGAT and sAAT in expression of inflammation-related genes at baseline conditions and in response to the weight-reducing DI., L. Mališová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The present studies investigated changes in expression of mRNA for adenosine A1, A2a, A2b, and A3 receptors in samples of HL-60 promyelocytic cells differing in the actual presence of cells in various phases of the cell cycle induced by the double thymidine block method. Real-time PCR technique was used for obtaining data on mRNA expression. Statistical analysis of the data revealed that the mRNA ex pression of adenosine A1, A2a, and A3 receptors is dependent on the cell cycle phase. G0/G1 and G2/M phases were characterized by a higher mRNA expression of adenosine A1 receptors and a lower one of adenosine A2a and A3 receptors whereas the opposite was true for the S phase. Interestingly, expression of mRNA of the adenosine A2b receptors was independent on the cell cycle phase. The results indicate the plasticity of mRNA expression of adenosine receptors in the investigated promyelocytic cells and its interaction with physiological mechanisms of the cell cycle., M. Hofer ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Serotonin receptors have been found in several reproductive organs as well as in the central nervous system. Serotonin-binding sites have been demonstrated in duck ovarian follicles and the testis, hamster ovaries, human granulosa cells and mouse placenta. Local production of serotonin by the rat ovary, oviduct, uterus and testis has also been reported. We analyzed the expression of three types of serotonin receptors: 5-HT1B, 5-HT2C and 5-HT1D by reverse transcription-polymerase chain reaction in mouse unfertilized oocytes and preimplantation embryos from zygotes to the blastocyst stage in vivo. Transcripts for 5-HT1B and 5-HT2C serotonin receptors were detected neither in unfertilized oocytes nor at any stages of in vivo developing preimplantation embryos. Serotonin 5-HT1D receptor mRNA was present in unfertilized oocytes, zygotes, 2-cell embryos, compacted morulae and in vivo produced expanded blatocysts. The expression of the mRNA 5-HT1D serotonin receptor was also detected in blastocysts cultured in vitro. When added to the culture medium, specific serotonin 5-HT1D agonist sumatriptan (1 μM) significantly inhibited the development of mouse embryos cultured in vitro. Demonstration of the expression of 5-HT1D serotonin receptor in mouse oocytes and preimplantation embryos supports the idea of a functional serotonin (5-HT1D) receptor in early mammalian development., J. Veselá, P. Rehák, J. Mihalik, S. Czikková, J. Pokorný, J. Koppel., and Obsahuje bibliografii
a1_We have investigated expression of skeletal calsequestrin (CSQ1) and fiber type composition in normal and regenerated fast and slow skeletal muscles and in the left heart ventricles of euthyroid (EU), hypothyroid (HY) and hyperthyroid (TH) adult inbred Lewis strain rats. The CSQ1 level was determined by SDS-PAGE followed by Western blot analysis. CSQ1 gene expression was assessed using reverse transcription and subsequent real time polymerase chain reaction. Muscle regeneration was achieved by intramuscular grafting of either soleus or extensor digitorum longus (EDL) from 3- to 4-week-old rats to either EDL or soleus muscle of 2-month-old rats. The fiber type composition was assessed by a stereological method applied to stained muscle cross sections. We found that the protein and mRNA levels for CSQ1 were highest in the EDL muscle, the relative CSQ1 protein levels in the soleus muscle were two times lower and the transcript levels more than 5 times lower compared to the EDL. In the left heart ventricle, protein isoform and CSQ1 transcript were also present, although at protein level, CSQ1 was hardly detectable. TH status increased and HY status decreased the expression of CSQ1 in the EDL, but its relative levels in the soleus and in the heart did not change. The regenerated soleus transplanted into EDL, as well as EDL transplanted into soleus exhibited protein and mRNA levels of CSQ1 corresponding to the host muscle and not to the graft source. TH status increased the percentages of the fastest 2X/D and 2B fibers at the expense of slow type 1 and fast 2A fibers in the EDL and that of fast 2A fibers in the soleus at the expense of slow type 1 fibers. HY status led to converse fiber type changes., a2_We suggest that the observed changes in CSQ1 levels in TH and HY compared to EU rats can be related to fiber type changes caused by alteration of the thyroid status rather than to the direct effect of thyroid hormones on CSQ1 gene expression., T. Soukup ... [et al.]., and Obsahuje seznam literatury
Nucleoside diphosphate kinase 7, non-metastatic cells 7 (NME7) is an acknowledged member of ciliome and is involved in the biogenesis or function of cilia. As obesity and diabetes are common in several ciliopathies, we aimed to analyze changes of gene expression within Nme7 interactome in genetically designed rat models of metabolic syndrome. We assessed the liver transcriptome by Affymetrix microarrays in adult males of 14 PXO recombinant inbred rat strains and their two progenitor strains, SHR-Lx and BXH2. In the strains with the lowest expression of Nme7, we have identified significant enrichment of transcripts belonging to Nme7 interactome. In the subsequent network analysis, we have identified three major upstream regulators - Hnf4a , Ppara and Nr1h4 and liver steatosis (p=0.0001) and liver necrosis/cell death (apoptosis of liver cells, p=0.0003) among the most enriched Tox categories. The mechanistic network reaching the top score showed substantial overlap with Assembly of non-motile cilium and Glucose metabolism disorder gene lists. In summary, we show in a genetic model of metabolic syndrome that rat strains with the lowest expression of Nme7 present gene expression shifts of Nme7 interactome that are perturbing networks relevant for carbohydrate and lipid metabolism as well as ciliogenesis., L. Šedová, E. Školníková, M. Hodúlová, J. Včelák, O. Šeda, B. Bendlová., and Obsahuje bibliografii
Hypotonic solution alters ion channel activity, but little attention has been paid to voltage-dependent sodium channels. The aim of this study was to investigate the effects of hypotonic solution on transient sodium currents (INaT) and persistent sodium currents (INaP). We also explored whether the intracellular signal transduction systems participated in the hypotonic modifications of sodium currents. INaT and INaP were recorded by means of whole-cell patch-clamp technique in isolated rat ventricular myocytes. Our results revealed that hypotonic solution reduced INaT and simultaneously augmented INaP with the occurrence of interconversion between INaT and INaP. Hypotonic solution shifted steady-state inactivation to a more negative potential, prolonged the time of recovery from inactivation, and enhanced intermediate inactivation (IIM). Ruthenium red (RR, inhibitor of TRPV4), bisindolylmaleimide VI (BIM, inhibitor of PKC), Kn-93 (inhibitor of Ca/CaMKII) and BAPTA (Ca2+-chelator) inhibited the effects of hypotonic solution on INaT and INaP. Therefore we conclude that hypotonic solution inhibits INaT, enhances INaP and IIM with the effects being reversible. TRPV4 and intracellular Ca2+, PKC and Ca/CaMKII participate in the hypotonic modifications of sodium currents., L. Hu ... [et al.]., and Obsahuje seznam literatury
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction α (α = ECS volume/ total tissue volume), 2. tortuosity λ (λ2 = free /apparent diffusion coefficient), reflecting the presence of diffusion barriers represented by, e.g., fine neuronal and glial processes or extracellular matrix molecules and 3. nonspecific uptake k’. These diffusion parameters differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Moreover, diffusion barriers may channel the migration of molecules in the ECS, so that diffusion is facilitated in a certain direction, i.e. diffusion in certain brain regions is anisotropic. Changes in the diffusion parameters have been found in many physiological and pathological states in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances in the CNS and thus extrasynaptic transmission, neuron-glia communication, transmitter „spillover“ and synaptic cross-talk as well as cell migration, drug delivery and treatment., L. Vargová, E. Syková., and Obsahuje bibliografii a bibliiografické odkazy
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assu mes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user’s eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration proc edure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of de velopment is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections)., E. Demjén, V. Aboši, Z. Tomori., and Obsahuje bibliografii a bibliografické odkazy