The metabolic pathways that contribute to maintain serum calcium concentration in narrow physiological range include the bone remodeling process, intestinal absorption and renal tubule resorption. Dysbalance in t hese regulations may lead to hyper - or hypocalcemia. Hypercalcemia is a potentionally life -threatening and relatively common clinical problem, which is mostly associated with hyperparathyroidism and/or malignant diseases (90 %). Scarce causes of hypercalce mia involve renal failure, kidney transplantation, endocrinopathies, granulomatous diseases, and the long -term treatment with some pharmaceuticals (vitamin D, retinoic acid, lithium). Genetic causes of hypercalcemia involve familial hypocalciuric hypercalc emia associated with an inactivation mutation in the calcium sensing receptor gene and/or a mutation in the CYP24A1 gene. Furthermore, hypercalcemia accompanying primary hyperparathyroidism, which develops as part of multiple endocrine neoplasia (MEN1 and MEN2), is also genetically determined. In this review mechanisms of hypercalcemia are discussed. The objective of this article is a review of hypercalcemia obtained from a Medline bibliographic search., I. Žofková., and Obsahuje bibliografii
Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi02=0.1) combined with hypercapnia (FiC02=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling of the peripheral pulmonary arteries compared with rats exposed only to chronic hypoxia (Fi02=0.1). According to our hypothesis, hypoxic pulmonary hypertension is triggered by hypoxic injury to the walls of the peripheral pulmonary arteries. Hypercapnia inhibits release of both oxygen radicals and nitric oxide at the beginning of exposure to the hypoxic environment. The plasma concentration of nitrotyrosine, the marker of peroxynitrite activity, is lower in hypoxic rats exposed to hypercapnia than in those exposed to hypoxia alone. Hypercapnia blunts hypoxia-induced collagenolysis in the walls of prealveolar pulmonary arteries. We conclude that hypercapnia inhibits the development of hypoxic pulmonary hypertension by the inhibition of radical injury to the walls of peripheral pulmonary arteries., M. Chovanec ... [et al.]., and Obsahuje seznam literatury
To determine whether changes in partial pressure of CO2 participate in mechanism enlarging the lung functional residual capacity (FRC) during chronic hypoxia, we measured FRC and ventilation in rats exposed either to poikilocapnic (group H, FIO2 0.1, FICO2 <0.01) or hypercapnic (group H+CO2, FIO2 0.1, FICO2 0.04-0.05) hypoxia for the three weeks and in the controls (group C) breathing air. At the end of exposure a body plethysmograph was used to measure ventilatory parameters (V´E, fR, VT) and FRC during air breathing and acute hypoxia (10 % O2 in N2). The exposure to hypoxia for three weeks increased FRC measured during air breathing in both experimental groups (H: 3.0±0.1 ml, H+CO2: 3.1±0.2 ml, C: 1.8±0.2 ml). During the following acute hypoxia, we observed a significant increase of FRC in the controls (3.2±0.2 ml) and in both experimental groups (H: 3.5±0.2 ml, H+CO2: 3.6±0.2 ml). Because chronic hypoxia combined with chronic hypercapnia and chronic poikilocapnic hypoxia induced the same increase of FRC, we conclude that hypercapnia did not participate in the FRC enlargement during chronic hypoxia., H. Maxová, M. Vízek., and Obsahuje bibliografii
The purpose of this study was to evaluate the effects of hyperglycemia on skeletal muscle recovery following disuseinduced muscle atrophy in rats. Wistar rats were grouped as streptozotocin-induced diabetic rats and non-diabetic rats. Both ankle joints of each rat were immobilized to induce atrophy of the gastrocnemius muscles. After two weeks of immobilization and an additional two weeks of recovery, tail blood and gastrocnemius muscles were isolated. Serial cross sections of muscles were stained for myosin ATPase (pH 4.5) and alkaline phosphatase activity. Serum insulin and muscle insulin-like growth factor-1 (IGF-1) levels were also measured. Serum insulin levels were significantly reduced in the diabetic rats compared to the non-diabetic controls. The diameters of type I, IIa, and IIb myofibers and capillary-to-myofiber ratio in the isolated muscle tissue were decreased after immobilization in both treatments. During the recovery period, these parameters were restored in the non-diabetic rats, but not in the diabetic rats. In addition, muscle IGF-1 levels after recovery increased significantly in the non-diabetic rats, but not in the diabetic rats. We conclude that decreased levels of insulin and IGF-1 and impairment of angiogenesis associated with diabetes might be partly responsible for the inhibition of regrowth in diabetic muscle., H. Kataoka, J. Nakano, Y. Morimoto, Y. Honda, J. Sakamoto, T. Origuchi, M. Okita, T. Yoshimura., and Obsahuje bibliografii
Hyperinflation is the consequence of a dysbalance of static forces (determining the relaxation volume) and/or of the dynamic components. The relaxation volume is determined by an equilibrium between the elastic recoil of the lungs and of the chest walls. The dynamic components include the pattern of breathing, upper airway resistance and postinspiratory activity of inspiratory muscles. The respiratory and laryngeal muscles are under control and thus both static and dynamic hyperinflation can be secured. Our knowledge of the mechanism of increased FRC is based on clinical observations and on experiments. The most frequent stimuli leading to a dynamic increase of functional residual lung capacity (FRC) include hypoxia and vagus afferentation. Regulation of FRC is still and undetermined concept. The controlled increase of FRC, hyperinflation, participates in a number of lung diseases., F. Paleček., and Obsahuje bibliografii
The aim of the study was to compare the effect of short-term hyperglycemia and short-term hyperinsulinemia on parameters of oxidative stress in Wistar rats. Twenty male rats (aged 3 months, average body weight 325 g) were tested by hyperinsulinemic clamp (100 IU/l) at two different glycemia levels (6 and 12 mmol/l). Further 20 rats were used as a control group infused with normal saline (instead of insulin) and 30 % glucose simultaneously. Measured parameters of oxidative stress were malondialdehyde (MDA), reduced glutathione (GSH) and total antioxidant capacity (AOC). AOC remained unchanged during hyperglycemia and hyperinsulinemia. Malondialdehyde (as a marker of lipid peroxidation) decreased significantly (p<0.05) during the euglycemic hyperinsulinemic clamp, and increased significantly during isolated hyperglycemia without hyperinsulinemia. Reduced glutathione decreased significantly (p<0.05) during hyperglycemia without hyperinsulinemia. These results suggest that the short-term exogenous hyperinsulinemia reduced the production of reactive oxygen species (ROS) during hyperglycemia in an animal model compared with the control group., P. Kyselová, M. Žourek, Z. Rušavý, L. Trefil, J. Racek., and Obsahuje bibliografii
a1_Chronic hypoxia causes pulmonary hypertension, the mechanism of which includes altered collagen metabolism in the pulmonary vascular wall. This chronic hypoxic pulmonary hypertension is gradually reversible upon reoxygenation. The return to air after the adjustment to chronic hypoxia resembles in some aspects a hyperoxic stimulus and we hypothesize that the changes of extracellular matrix proteins in peripheral pulmonary arteries may be similar. Therefore, we studied the exposure to moderate chronic hyperoxia (FiO2 = 0.35, 3 weeks) in rats and compared its effects on the rat pulmonary vasculature to the effects of recovery (3 weeks) from chronic hypoxia (FiO2 = 0.1, 3 weeks). Chronically hypoxic rats had pulmonary hypertension (Pap = 26±3 mm Hg, controls 16±1 mm Hg) and right ventricular hypertrophy. Pulmonary arterial blood pressure and right ventricle weight normalized after 3 weeks of recovery in air (Pap = 19±1 mm Hg). The rats exposed to moderate chronic hyperoxia also did not have pulmonary hypertension (Pap = 18±1 mm Hg, controls 17±1 mm Hg). Collagenous proteins isolated from the peripheral pulmonary arteries (100-300 mm) were studied using polyacrylamide gel electrophoresis. A dominant low molecular weight peptide (approx. 76 kD) was found in hypoxic rats. The proportion of this peptide decreases significantly in the course of recovery in air. In addition, another larger peptide doublet was found in rats recovering from chronic hypoxia. It was localized in polyacrylamide gels close to the zone of a2 chain of collagen type I. It was bound to anticollagen type I antibodies. An identically localized peptide was found in rats exposed to moderate chronic hyperoxia. The apparent molecular weight of this collagen fraction suggests that it is a product of collagen type I cleavage by a rodent-type interstitial collagenase (MMP-13)., a2_We conclude that chronic moderate hyperoxia and recovery from chronic hypoxia have a similar effect on collagenous proteins of the peripheral pulmonary arterial wall., J. Novotná, J. Bíbová, V. Hampl, Z. Deyl, J. Herget., and Obsahuje bibliografii
We investigated the influence of oxygenation of in vitro lung preparation on the pulmonary vascular reactivity. Small pulmonary vessels isolated from adult male Wistar rats exposed for 4 days to hypoxia (FiO2 = 0.1, group CH) were compared with those of normoxic controls (group N). The bath in the chamber of small vessel myograph was saturated with gas mixture containing either 21 % or 95 % of O2 with 5 % CO2 and we measured the reactions of vessels to acute hypoxic challenge with 0 % O2 or to PGF2α. We did not observe any difference of the contractile responses between both groups when the normoxic conditions were set in the bath. When the bath oxygenation was increased to 95 % O2, the contractions induced by hypoxic challenge and PGF2α decreased in chronically hypoxic rats and did not change in normoxic controls. We hypothesize that reduced reactivity of vessels from hypoxic rats in hyperoxia results from the effect of chronic hypoxia on Ca2+ signaling in the vascular smooth muscle, which is modulated by increased free radical production during the exposure to chronic hypoxia and further hyperoxia., M. Žaloudíková, M. Vízek, J. Herget., and Obsahuje seznam literatury
Experimental pneumonia induced by intratracheal application of carrageenan or paraquat increases the functional residual lung capacity (FRC) in rats. The mechanism of this increase is not clear, but a decrease in PO2 may be involved. To test this possibility, we attempted to eliminate the PO2 decrease in carrageenan-treated rats by exposing them to hyperoxia. Animals of the first group were exposed to 7 days of hyperoxia (FIO2 0.78-0.84, group Car+O2) after intratracheal application of carrageenan (0.5 ml of 0.7 % carageenan in saline), whereas animals of the second group were given the same dose of carrageenan but breathed air (group Car+A). The third group of rats was kept for seven days in hyperoxia (group O2) and the fourth group served as controls (C). The animals were then anesthetized and intubated and their ventilatory parameters and FRC were measured during air breathing. Carrageenan application induced a FRC increase (Car+A 2.0±0.2 ml, C 1.6±0.1 ml), which was not seen in carrageenan-treated rats exposed to hyperoxia (Car+O2 1.6±0.1 ml). Hyperoxia alone did not affect the value of FRC (O2 1.5±0.1 ml). These results support the hypothesis that a decrease in PO2 plays an important role in the carrageenan-induced increase of FRC in rats., B. Fišárková, M. Vízek., and Obsahuje bibliografii