Recent data suggest that there is interaction between peripheral angiotensin II and nitric oxide. However, sparse information is available on the mutual interaction of these two compounds in the brain. The potential intercourse of nitric oxide with brain neuropeptides needs to be substantiated by assessing its local production and gene expression of the synthesizing enzymes involved. The aim of the present study was to evaluate whether the gene expression of brain nitric oxide synthase (bNOS) is related to the sites of gene expression of different components of the rat brain renin angiotensin system (renin, angiotensin converting enzyme (ACE) or angiotensin receptors of AT1 and AT2 subtypes). The levels of corresponding mRNAs were measured and correlated in nine structures of adult rat brain (hippocampus, amygdala, septum, thalamus, hypothalamus, cortex, pons, medulla and cerebellum). As was expected, positive correlation was observed between renin and angiotensin-converting enzyme mRNAs. Moreover, a significant correlation was found between brain NO synthase and AT1 receptor mRNAs, but not with mRNA of the AT2 receptor, ACE and renin. Parallel distribution of mRNAs coding for bNOS and AT1 receptors in several rat brain structures suggests a possible interaction between brain angiotensin II and nitric oxide, which remains to be definitely demonstrated by other approaches., O. Križanová, A. Kiss, Ľ. Žáčiková, D. Ježová., and Obsahuje bibliografii
NO concentration in the femoral artery and femoral vein of anesthetized dogs was found to be 154.2± 5.6 nM and 90.0± 12 nM, respectively. Inhibition of NO synthase (NOS) slightly decreased the basal NO concentration in femoral artery from 154.2± 5.6 to 137.2± 3.3 nM. Acetylcholine-induced increase in NO concentration was slightly but still significantly attenuated, suggesting that very probably L-NAME did not inhibit all sources of nitric oxide (NO). Local NOS inhibition in the posterior hypothalamus dose-dependently increased systemic blood pressure (BP) in rats. Short-term general NOS inhibition in anesthetized dogs increased diastolic BP but not systolic BP. The heart rate after one-hour down-fluctuation returned to initial values. Proteosynthesis in the myocardium and both branches of the left coronary artery increased, but this was not supported by polyamines, since the activity of ornithine decarboxylase declined. Long-term general NOS inhibition elicited a sustained BP increase, a decrease in heart rate, cardiac hypertrophy and an increase in wall thickness of the coronary and carotid artery. The results indicate that NO deficiency itself plays a role in proteosynthesis and cardiac hypertrophy, in spite of relatively small increase in diastolic blood pressure and no change in systolic blood pressure, at least after an acute L-NAME administration. The hypotension response to acetylcholine and bradykinin studied in anesthetized NO-compromised rats, was unexpectedly enhanced. The elucidation of this paradoxical phenomenon will require further experiments., M. Gerová., and Obsahuje bibliografii
The protective effect of therapeutic hypothermia in cardiac arrest survivors (CAS) has been previously well documented. Animal studies have indicated that attenuation of tissue oxidative stress (OS) may be involved in the mechanisms that lead to the beneficial effect of hypothermia. The extent of OS and nitric oxide (NO) production in adult CAS treated with endovascular hypothermia is, however, unknown. A total of 11 adult patients who experienced cardiac arrest out of hospital were included in the present study, and all were treated with mild hypothermia using the Thermogard XP (Alsius, USA) endovascular system. A target core temperature of 33 °C was maintained for 24 hours, with a subsequent rewarming rate of 0.15 °C per hour, followed by normothermia at 36.8 °C. Blood samples for the measurement of nitrotyrosine and nitrate/nitrite levels were drawn at admission and every 6 hours thereafter for two days. During the hypothermic period, the levels of nitrotyrosine and nitrates/nitrites were comparable with baseline values. During the rewarming period, serum levels of both parameters gradually increased and, during the normothermic period, the levels were significantly higher compared with hypothermic levels (nitrotyrosine, P<0.001; nitrates/nitrites, P<0.05). In our study, significantly lower levels of nitrotyrosine and nitrates/nitrites were demonstrated during hypothermia compared with levels during the normothermic period in adult CAS. These data suggest that attenuation of OS and NO production may be involved in the protective effect of hypothermia in adult CAS., A. Krüger ... [et al.]., and Obsahuje seznam literatury
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2 nd postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognit ive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N- methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats., E. Szczurowska, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy
The key role of the vagus nerves in the reflex control of breathing is generally accepted. Cardiopulmonary vagal receptors and their afferent connection with the medullary respiratory centers secures the proper regulatory feedback. Section of the vagi at the midcervical level interrupts primary vagal reflexes and those due to activation of lung afferents by neuroactive substances. In this context the present review focuses on the reflex contribution of the inferior (nodose) vagal ganglia to the respiratory pattern, considering that this structure contains perikarya of vagal afferent neurons which house neurotransmitters, neuropeptides and neurochemical substances. In experimental animals with removed sensory input from the lungs (midcervical vagotomy) the following evidence was reported. Transient respiratory suppression in the form of apnoea, occuring after systemic injection of serotonin, adenosine triphosphate and anandamide (N-arachidonoyl-ethanolamine-endogenous cannabinoid neurotransmitter), which was abrogated by nodose ganglionectomy. Preserved nodose-NTS connection conditioned respiratory depression affecting the timing component of the breathing pattern evoked by N-6-cyclopentyl-adenosine (CPA) and inhibition of both respiratory constituents induced by NPY. Stimulatory effect of NPY13-36 on tidal volume required nodosal connection. The cardiovascular effects of majority of the tested substances occurred beyond the nodose ganglia (with exclusion of serotonin and anandamide)., K. Kaczyńska, M. Szereda-Przestaszewska., and Obsahuje seznam literatury
There are two principal mechanisms of acetylcholine (ACh) release from the resting motor nerve terminal: quantal and non-quantal (NQR); the former being only a small fraction of the total, at least at rest. In the present article we summarize basic research about the NQR that is undoubtedly an important trophic factor during endplate development and in adult neuromuscular contacts. NQR helps to eliminate the polyneural innervation of developing muscle fibers, ensures higher excitability of the adult subsynaptic membrane by surplus polarization and protects the RMP from depolarization by regulating the NO cascade and chloride transport. It shortens the endplate potentials by promoting postsynaptic receptor desensitization when AChE is inhibited during anti-AChE poisoning. In adult synapses, it can also activate the electrogenic Na+/K+-pump, change the degree of synchronization of quanta released by the nerve stimulation and affects the contractility of skeletal muscles., F. Vyskočil, A. I. Malomouzh, E. E. Nikolsky., and Obsahuje seznam literatury
Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation., M. Rampichová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
A method using body surface potential maps for assessment of myocardium lesions with changed repolarization is presented and suitable mapping system is introduced. Differences between normal and altered QRST integral maps together with torso volume conductor model were used to determine the equivalent dipole representing the lesion. Performance of the method was studied on simulated data. Changed repolarization was modeled by shortening of myocyte action potentials in regions typical for stenosis of the main coronary arteries. The equivalent dipole estimated the positions of small lesions with a mean error of 9±4 mm (17±14 mm for larger transmural lesions). The subepicardial or subendocardial character of the lesions was reflected in the dipole orientation. Tests of the method on patients after myocardial infarction that underwent coronary intervention on a single coronary vessel showed that in 7 of 8 successfully treated patients the dipole position matched well with the treated vessel. A small dipole moment in another patient indicated unsuccessful treatment. The method was implemented in a new 128-channel mapping system. Its active electrodes, battery powered measuring unit and optical computer interface help to minimize noise in ECG and guarantee patient´s safety. The results suggest that the method and mapping system offer useful tools for noninvasive identification of local repolarization changes in the myocardium., M. Tyšler, P. Kneppo, M. Turzová, J. Švehlíková, S. Karas, E. Hebláková, K. Hána, S. Filipová., and Obsahuje bibliografii
b1_We previously demonstrated in rats that noninvasive delayed limb ischemic preconditioning (LIPC) induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb per day for three days confers the sa me cardioprotective effect as local ischemic preconditioning of the heart, but the mechanism has not been studied in depth. The aim of this project was to test the hypothesis that delayed LIPC enhances myocardial antioxidative ability during ischemia-reperfusion by a mitochondrial KATP channel (mito KATP)-dependent mechanism. Rats were randomized to five gr oups: ischemia-reperfusion (IR)- control group, myocardial ischemic preconditioning (MIPC) group, LIPC group, IR-5HD group and LIPC-5HD group. The MIPC group underwent local ischemic precondi tioning induced by three cycles of 5-min occlusion and 5-min reperfusion of the left anterior descending coronary arteries. The LIPC and LIPC-5HD groups underwent LIPC induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb using a modified blood pressure aerocyst per day for three days. All rats were subjected to myocardial ischemia-reperfu sion injury. The IR-5HD and LIPC-5HD groups received the mito KATP channel blocker 5-hydroxydecanoate Na (5-HD) before and during the myocardial ischemia-reperfusion injury. Compar ed with the IR-control group, both the LIPC and MIPC groups showed an amelioration of ventricular arrhythmia, reduced my ocardial infarct size, increased activities of total superoxide dismutase, manganese-superoxide dismutase (Mn-SOD) and glutathione peroxidase, increased expression of Mn-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration. These beneficial effects of LIPC were prevented by 5-HD. In conclusion , delayed LIPC offers similar cardioprotecti on as local IPC., b2_These results support the hypothesis that the activation of mito K ATP channels enhances myocardial antioxidat ive ability during ischemia- reperfusion, thereby contributing, at least in part, to the anti- arrhythmic and anti-infarct effects of delayed LIPC., Y.-N. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy