We examined the carbon budget of young winter wheat plants and their associated microorganisms as affected by a doubling of the atmospheric CO2 concentration (700 µmol mol-1). Plants were grown hydroponically in pre-sterilised sand at a controlled irradiance and temperature regime. Net photosynthesis (PN) and respiration (RD) rates of roots and shoots were measured continuously, plant growth and carbon distribution in the plant-root medium-associated microorganism system were determined destructively in interval-based analyses. PN in elevated CO2 grown plants (EC) was 123% of that in the control (AC) plants when averaged over the whole life span (39-d-old plants, 34 d in EC), but the percentage varied with the developmental stage being 115, 88, and 167% in the pretillering, tillering, and posttillering phase, respectively. There was a transient depression of PN, higher amplitude of day/night fluctuations of the chloroplast starch content, and depression of carbon content in rhizosphere of EC plants during the period of tillering. After 34 d in EC, carbon content in shoots, roots, and in rhizodepositions was enhanced by the factors 1.05, 1.28, and 1.96, respectively. Carbon partitioning between above and belowground biomass was not affected by EC, however, proportionally more C in the belowground partitioning was allocated into the root biomass. Carbon flow from roots to rhizodepositions and rhizosphere microflora was proportional to PN; its fraction in daily assimilated carbon decreased from young (17%) to order (3-4%) plants. and H. Šantrůčková ... [et al.].
Based on a 20-year fertilization experiment with wheat-maize double cropping system, the effects of different long-term fertilization treatments on leaf photosynthetic characteristics and grain yield in different winter wheat (Triticum aestivum L.) cultivars were studied in the growing seasons of 2000-2001 and 2001-2002. A total of nine fertilization treatments were implemented, i.e. no fertilizer (CK), N fertilizer (N), N and P fertilizers (NP), N and K fertilizers (NK), N, P, and K fertilizers (NPK), only organic manure (M), organic manure and N fertilizer (MN), organic manure and N and P fertilizers (MNP), and organic manure and N, P, and K fertilizers (MNPK). With the treatments of combined organic manure and inorganic fertilizers (TMI), net photosynthetic rate (PN), maximal activity of photosystem 2, PS2 (Fv/Fm), and chlorophyll content (SPAD value) of flag leaves and leaf area index (LAI) were much higher at the mid grain filling stage (20 or 23 d post anthesis, DPA), and exhibited slower declines at the late grain filling stage (30 DPA), compared with the treatments of only inorganic fertilizers (TI). The maximal canopy photosynthetic traits expressed as PN×LAI and SPAD×LAI at the mid grain filling stage were also higher in TMI than those in TI, which resulted in different grain yields in TMI and TI. Among the treatments of TMI or among the treatments of TI, both flag leaf and canopy photosynthetic abilities and yield levels increased with the supplement of inorganic nutrients (N, P, and K fertilizers), except for the treatment of NK. Under NK, soil contents of N and K increased while that of P decreased. Hence the unbalanced nutrients in soil from the improper input of nutrients in NK treatment were probably responsible for the reduced flag leaf and canopy photosynthetic characteristics and LAI, and for the fast declining of flag leaf photosynthetic traits during grain filling, resulting in the reduced yield of NK similar to the level of CK. and D. Jiang ... [et al.].
The possibility of simultaneously ušed chlorophyll (Chl) synthesis precursor (glutamic acid) and metal chelator (2,2'-dipyridyl) as a photodynamic inhibitor of the chlorophyll synthesis was studied. Wheat {Triticum aestivum L.) and vegetable marrow {Cucurbita moschata Duch.) leaves were treated with 2,2'-dipyridyl (2,2'- DP), and 2,2'-DP along with glutamic acid which increased the protochlorophyllide (Pchlide) content in the vegetable marrow plants to a higher extent. An irradiation of the treated leaves caused an inhibition of Pchlide reduction which was more notable in those of the dicotyledonous vegetable marrow plant.
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80-85 % (O3+W) or drought treated (SWC 35-40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (PN) of winter wheat. Under good SWC, PN of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. PN of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although PN was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of PN was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution. and H. Xu ... [et al.].
To quantify photosynthetic response of wheat to the combination of a fungal brown rust infection and a post-infection drought, four treatments were compared: no stress (control), fungal stress (FS), water stress (WS), and twofold stress (WS×FS). Predawn leaf water potential (Ψwp) was similar in FS and WS treatments over a 3-week period. In the WS treatment, net photosynthetic rate (PN) and stomata CO2 conductance (gs) diminished concomitantly with a constant intercellular CO2 concentration (Ci) close to 200 µmol mol-1. In the FS treatment, a reduction of PN occurred with an increase in respiration rate (doubling of the CO2 compensation concentration) and in Ci but with no water loss modification. Healthy leaves of infected plants (FS) showed a reduction of PN as well, with constant gs and increased Ci. In the twofold stress treatment (WS×FS), leaves showed reduced PN in relation to the lower Ψwp. Deleterious effects of both drought and fungal infection on the final area of leaves and dry matter were additive. and O. Bethenod, L. Huber, H. Slimi.
The aim of our study was to answer whether any positive correlation exists between K+ uptake and salt tolerance in wheat. We carried out a sand-culture experiment with salt-tolerant, DK961 (ST), and salt-sensitive, JN17 (SS), wheat cultivars, where photosynthesis, the K+/Na+ ratio, growth, and the biomass yield were examined. The seeds were exposed for four weeks to six NaCl concentrations (50, 100, 150, 200, 250, and 300 mM), which were embodied in the Hoagland solution. Salinity-induced decrease of K+ or increase in the Na+ content was much smaller in ST than that in SS. The reductions in the light-saturated photosynthetic rate (P Nmax) and chlorophyll content caused by salinity were smaller in the ST compared to SS. Stomatal conductance decreased in both cultivars under saline conditions; nevertheless, it was lower in SS than in ST. The antioxidative capacity was higher in ST than that in SS under saline conditions. Significant positive correlations were observed in both cultivars between K+ contents and P Nmax/biomass yields. We suggest that higher-affinity K+ uptake might play a key role in higher salt tolerance and it might be a reliable indicator for breeding new species of salt-tolerant wheat., D. Cheng, G. Wu, Y. Zheng., and Obsahuje seznam literatury
The effects of 2-chloroethyltrimethylammonium chloride (CCh), 2-ethyltrimethylammonium chloride (Ch), and acetylcholine chloride (ACh) at concentrations of 1 µM - 5 mM and of red radiation (R) pulse on growth, greening, and formation of the photosynthetic apparatus in etiolated wheat seedlings (Triticum aestivum L. cv. Moskovskaya-35) were examined. A short-term application of cholines and R pulse stimulated the first leaf growth and its appearance from coleoptile, and inhibited the coleoptile growth. The effects of cholines were observed during 96 h after the treatment of 4-d-old seedlings and depended on the type and the concentration of cholines. CCh, Ch, and R were also stimulators of greening and increased the photosynthetic activity, whereas ACh did not influence the process of greening. Joint effects of R with cholines on the growth and photomorphogenesis were greater than the individual ones, whereas far-red (FR) radiation decreased the influence of cholines. Thus phytochrome may modify the effects of cholines in the processes of growth and greening. and E. F. Kobzar, V. D. Kreslavskiï, E. N. Muzafarov.
Heat stress has become more common in recent years, limiting wheat production in Huang-Huai-Hai plain in China. To identify the effect of long-term heat stress on wheat production, two heat-resistant (JM44, JM23) and two heat-sensitive (XM26, GC8901) wheat varieties were sown in heat tents and normal conditions, and heat stress (9 to 12℃ higher than control) was imposed for seven days at post-anthesis. All varieties under heat stress exhibited early senescence and reduced grain-filling rate, while the grain-filling period of heat-tolerant varieties was longer than that of the heat-sensitive. Furthermore, long-term heat stress significantly reduced kernel mass, grain number, harvest index, chlorophyll content, maximum quantum yield of PSⅡ photochemistry, effective quantum yield of PSⅡ photochemistry, photosynthetic rate, and transpiration efficiency. In addition, the distribution of dry matter to vegetative organs, catalase activity, and malondialdehyde content increased. These results indicated that the lesser yield reduction of heat-resistant varieties (11-26%) than that of heat-sensitive (16-37%) is due to relatively higher antioxidative and photosynthetic performance and higher assimilation in the grain from vegetative organs.
A sand-culture experiment was conducted in open-top chambers which were constructed in a greenhouse to investigate the responses of salt-stressed wheat (Triticum aestivum L.) to O3. Plant seeding of JN17 (a popular winter wheat cultivar) was grown in saltless (-S) and saline (+S, 100 mM NaCl) conditions combined with charcoal-filtered air (CF, < 5 ppb O3) and elevated O3 (+O3,
80 ± 5 ppb, 8 h day-1) for 30 d. O3 significantly reduced net photosynthetic rate (PN), stomatal conductance, chlorophyll contents and plant biomass in -S treatment, but no considerable differences were noted in those parameters between +O3+S and CF+S treatments. O3-induced loss in cellular membrane integrity was significant in -S plants, but not in +S plants evidenced by significant elevations being measured in electrolyte leakage (EL) and malondialdehyde (MDA) content in -S plants, but not in +S plants. Both O3 and salinity increased proline content and stimulated antioxidant enzymes activities. Soluble protein increased by salinity but decreased by O3. Abscisic acid (ABA) was significantly elevated by O3 in -S plants but not in +S plants. The results of this study suggested that the specificity of different agricultural environments should be considered in order to develop reliable prediction models on O3 damage to wheat plants. and Y. H. Zheng ... [et al.].
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (PN), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high PN duration, and accumulation of photosynthates in wheat plants., C. Xu ... [et al.]., and Obsahuje bibliografii