Oxidative stress and apoptosis are proposed mechanisms of cellular injury in studies of xenobiotic hepatotoxicity. This study is focused on addressing the mutual relationship and early signals of these mechanisms in the D-galactosamine and lipopolysaccharide (D-GalN/LPS) hepatotoxicity model, with the help of standard liver function and biochemistry tests, histology, and measurement of gene expression by RT-PCR. Intraperitoneal injection of 400 mg/kg D-GalN and 50 μg/kg LPS was able to induce hepatotoxicity in rats, as evidenced by significant increases in liver enzymes (ALT, AST) and raised bilirubin levels in plasma. Heme oxygenase-1 and nitric oxide synthase-2 gene expressions were significantly increa sed, along with levels of their products, bilirubin and nitrite. Th e gene expression of glutathione peroxidase 1 remained unchanged, whereas a decrease in superoxide dismutase 1 gene expression was noted. Furthermore, the significant increase in the gene expression of apoptotic genes Bid, Bax and caspase-3 indicate early activation of apoptotic pathways, which was confirmed by histological evaluation. In contrast, the measured caspase-3 activity remained unchanged. Overall, the results have revealed differential oxidative stress and apoptotic responses, which deserves further investigations in this hepatotoxicity model., N. Lekić ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung damage, inflammation, oedema formation, and surfactant dysfunction leading to hypoxemia. Severe ARDS can accelerate the injury of other organs, worsening the patient´s status. There is an evidence that the lung tissue injury affects the right heart function causing cor pulmonale. However, heart tissue changes associated with ARDS are still poorly known. Therefore, this study evaluated oxidative and inflammatory modifications of the heart tissue in two experimental models of ARDS induced in New Zealand rabbits by intratracheal instillation of neonatal meconium (100 mg/kg) or by repetitive lung lavages with saline (30 ml/kg). Since induction of the respiratory insufficiency, all animals were oxygen-ventilated for next 5 h. Total and differential counts of leukocytes were measured in the arterial blood, markers of myocardial injury [(troponin, creatine kinase - myocardial band (CK-MB), lactate dehydrogenase (LD)] in the plasma, and markers of inflammation [tumour necrosis factor (TNF)α, interleukin (IL)-6], cardiovascular risk [galectin-3 (Gal-3)], oxidative changes [thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine (3NT)], and vascular damage [receptor for advanced glycation end products (RAGE)] in the heart tissue. Apoptosis of heart cells was investigated immunohistochemically. In both ARDS models, counts of total leukocytes and neutrophils in the blood, markers of myocardial injury, inflammation, oxidative and vascular damage in the plasma and heart tissue, and heart cell apoptosis increased compared to controls. This study indicates that changes associated with ARDS may contribute to early heart damage what can potentially deteriorate the cardiac function and contribute to its failure.
Monosodium glutamate (MSG), the sodium salt of glutamate, is commonly used as a flavor enhancer in modern nutrition. Recent studies have shown th e existence of glutamate receptors on lymphocytes, thymoc ytes and thymic stromal cells. In this study, we evaluated the in vitro effect of different MSG concentr ations on rat thymocyte apoptosis and expression of two apoptosis-related proteins, Bcl-2 and Bax. Rat thymocytes, obtained from male Wistar rats, were exposed to increasing concentrations of MSG (ranging from 1 mM to 100 mM) for 24 h. Apoptosis was detected using the Annexin V-FITC/PI apoptosis detection kit and cells were analyzed using a flow cytometer. Expression of Bcl-2 and Bax proteins were determined with flow cytometry using respective monoclonal antibodies. Exposure to MSG resulted in a dose-dependent decrease in cell survival (as determined by trypan blue exclusion method). Annexin V- FITC/PI also confirmed that MSG incr eased, in a dose-dependent manner, ap optotic cell death in rat thymocyte cultures. MSG treatment induced downregulation of Bcl-2 protein, while Bax protein levels were not significantly changed. Our data showed that MSG significantly modulates thymocyte apoptosis rate in cultures. The temporal profile of Bcl-2 and Bax expression after MSG treatment suggests that downregulation of Bcl-2 protein and the resulting change of Bcl-2/Bax protein ratio may be an important event in thymocyte apoptosis triggered by MSG., V. Pavlović, S. Cekić, G. Kocić, D. Sokolović, V. Živković., and Obsahuje bibliografii a bibliografické odkazy
Ionizing radiation and somatostatin analogues are used for acromegaly treatment to achieve normalization or reduction of growth hormone hypersecretion and tumor shrinkage. In this study, we investigated a combination of somatostatin (SS14) with ionizing radiation of 60Co and its effect on reparation of radiation-induced damage and cell death of somatomammotroph pituitary cells GH3. Doses of γ-radiation 20-50 Gy were shown to inhibit proliferation and induce apoptosis in GH3 cells regardless of somatostatin presence. It has been found that the D0 value for GH3 cells was 2.5 Gy. Somatostatin treatment increased radiosensitivity of GH3 cells, so that D0 value decreased to 2.2 Gy. We detected quick phosphorylation of histone H2A.X upon irradiation by the dose 20 Gy and its colocalization with phosphorylated protein Nbs-1 in the site of double strand break of DNA (DSB). Number of DSB decreased significantly 24 h after irradiation, however, clearly distinguished foci persisted, indicating non repaired DSB, after irradiation alone or after combined treatment by irradiation and SS14. We found that SS14 alone triggers phosphorylation of Nbs1 (p-Nbs1), which correlates with antiproliferative effect of SS14. Irradiation also increased the presence of p-Nbs1. Most intensive phosphorylation of Nbs1 was detected after combined treatment of irradiation and SS14. The decrease of the number of the DSB foci 24 h after treatment shows a significant capacity of repair systems of GH3 cells. In spite of this, large number of unrepaired DSB persists for 24 h after the treatment. We conclude that SS14 does not have a radioprotective effect on somatomammotroph GH3 cells., M. Řezáčová, J. Čáp, D. Vokurková, E. Lukášová, J. Vávrová, J. Cerman, V. Mašín, N. Mazánková., and Obsahuje bibliografii a bibliografické odkazy
Plant essential oils (EOs) have been reported to have health benefit properties and their preventive and therapeutic use in animals is expected to increase in the future. We evaluated the influence of five essential oils obtained from plant species which are known to have positive antimicrobial, antioxidative and anti-inflammatory effects – sage EO from Salvia officinalis L. (Lamiaceae), oregano EO from Origanum vulgare L. (Lamiaceae), thyme EO from Thymus vulgaris L. (Lamiaceae), clove EO from Syzygium aromaticum L. (Myrtaceae) and cinnamon EO from Cinnamomum zeylanicum Blume (Lauraceae) on the growth and development of mouse preimplantation embryos in vivo. Essential oils were added to commercial diet at concentrations of 0.25 % for sage EO, thyme EO, clove EO, cinnamon EO and 0.1 % for oregano EO, and fed to ICR female mice for 2 weeks ad libitum. Females were then mated with males of the same strain. Embryos obtained on Day 4 of pregnancy at the blastocyst stage were stained by morphological triple staining (Hoechst, PI, Calcein-AM) and evaluated using fluorescent microscopy. The effects of essential oils were estimated by the viability of embryos, number of nuclei and distribution of embryos according to nucleus number. Cinnamon EO significantly decreased the number of nuclei and the distribution of embryos according to nucleus number was significantly altered. Sage EO negatively influenced the distribution of embryos according to nucleus number. Clove and oregano EOs induced a significantly increased rate of cell death. Only thyme EO had no detectable effects on embryo development. In conclusion, none of the essential oils had any positive effect on embryo development, but some of them reduced the number of cells and increased the incidence of cell death., M. Domaracký, P. Rehák, Š. Juhás, J. Koppel., and Obsahuje bibliografii a bibliografické odkazy
Gel electrophoresis of DNA was used for estimation of DNA changes caused in C6 glioma cells by treatment with psychotropic drugs (imipramine, amitryptiline and fluoxetine). Some discrete bands containing a population of short DNA fragments appeared after 1 and 5 days of cultivation. Apoptotic DNA breaks were verified at single cell level using the TUNEL test in cells treated with fluoxetine.
The ischemia and reperfusion of a jejunal graft during transplantation triggers the stress of endoplasmic reticulum thus inducing the synthesis of pro-inflammatory cytokines. Spreading of these signals stimulate immunological reactions in distal tissues, i.e. lung, liver and spleen. The aim of this study was to detect the molecular changes in liver and spleen induced by transplanted jejunal graft with one or six hours of reperfusion (group Tx1 and Tx6). Analysis of gene expression changes of inflammatory mediators (TNF-α, IL-10) and specific chaperones (Gadd153, Grp78) derived from endoplasmic reticulum (ER) was done and compared to control group. The qRT-PCR method was used for amplification of the specific genes. The levels of corresponding proteins were detected by Western blot with immunodetection. Protein TNF-α was in liver tissue significantly overexpressed in the experimental group Tx1 by 48 % (p<0.001). In the group Tx6 we found decreased levels of the same protein to the level of controls. However, the protein concentrations of TNF-α in spleen showed increased levels in group Tx1 by 31 % (p<0.001) but even higher levels in the group Tx6 by 115 % (p<0.001) in comparing to controls. Our data demonstrated that the spleen is more sensitive to posttransplantation inflammation than liver, with consequent stress of ER potentially inducing apoptosis and failure of basic functions of lymphoid tissue., P. Urban, M. Rabajdová, Š. Feterik, G. Bódy, T. Granda, M. Mareková, J. Veselá., and Obsahuje bibliografii
Exercise can improve the cardiovascular health. However, the mechanism contributing to its beneficial effect on elderly patients with myocardial infarction is obscure. 20-month-old male Sprague-Dawley rats were used to establish myocardial infarction (MI) model by permanent ligation of the left anterior descending coronary artery (LAD) of the heart, followed by 4-week interval exercise training on a motor-driven rodent treadmill. The cardiac function, myocardial fibrosis, apoptosis, oxidative stress, and inflammatory responses were determined by using pressure transducer catheter, polygraph physiological data acquisition system, Masson's trichrome staining, and ELISA to evaluate the impact of post-MI exercise training on MI. Western blot were performed to detect the activation of AMPK/SIRT1/PGC-1α signaling in the hearts of aged rats. Exercise training significantly improved cardiac function and reduced the cardiac fibrosis. In infarcted heart, the apoptosis, oxidative stress, and inflammation were significantly reduced after 4-week exercise training. Mechanistically, AMPK/SIRT1/PGC-1α pathway was activated in the myocardial infarction area after exercise training, which might participate in the protection of cardiac function. Exercise training improves cardiac function in MI rats through reduction of apoptosis, oxidative stress, and inflammation, which may mediate by the activation of AMPK/SIRT1/PGC-1α signaling pathway.
MicroRNAs (miRNAs) play vital roles in bone metabolism and participate in the mechanically induced bone alterations. The underlying molecular mechanisms by which fluid shear stress (FSS) regulate the proliferative and apoptotic phenotypic changes of osteoblasts remain elusive. The study aimed to investigate the regulatory effects of FSS on osteoblast proliferative and apoptotic phenotypes and the roles of miR-214-3p-ATF4 (activating transcription factor 4) signaling axis in the mechanomodulation processes. FSS promoted the proliferative activity of osteoblasts and suppressed mitochondrial-mediated osteoblast apoptosis. FSS decreased miR-214-3p expression and increased ATF4 expression in MC3T3-E1 osteoblasts. MiR-214-3p inhibited osteoblast proliferative activity and promoted mitochondrialmediated osteoblast apoptosis. Overexpression of miR-214-3p attenuated FSS-enhanced osteoblast proliferation and FSS-suppressed mitochondrial-mediated osteoblast apoptosis. We validated that ATF4 acted as a target gene of miR-214-3p. Moreover, miR-214-3p regulated osteoblast proliferation and apoptosis through targeting ATF4. Taken together, our study proved that FSS could suppress mitochondrial-mediated osteoblast apoptosis and promote osteoblast proliferation through the miR-214-3p-ATF4 signaling axis.
Coccidiosis is a parasitic disease caused by protists (apicomplexans) of the genus Eimeria Schneider, 1875 and is considered to be the most important disease faced by rabbit breeders due to its high morbidity. In the present study, the antioxidant status and changes in apoptosis and in the expression of some genes were quantified in rabbits' ilea following infection with Eimeria intestinalis Cheissin, 1948. Rabbits, orally infected with 1 × 105 sporulated oocysts of E. intestinalis, started to shed oocysts in their faeces on 8 days post infection (dpi) and reached maximum excretion on 10 dpi, with approximately 5 million oocysts. This was accompanied by a significant decrease in the live body weight of infected rabbits. Also, malondialdehyde and nitric oxide were significantly increased while catalase and glutathione were significantly decreased in the ileum tissues of the infected rabbits. In addition, a significant increase was observed in the percentages of apoptotic cells in the ilea of the infected rabbits. Furthermore, interleukin-1β and interleukin-2 mRNA levels were significantly down-regulated and mRNA levels of interleukin-6, interferon gamma and inducible nitric oxide synthase were significantly up-regulated, while those of C-reactive protein remained unchanged. We conclude that infection with E. intestinalis induces oxidative stress, a significant increase in the percentage of apoptotic cells and a diverse and robust Th1 and Th1-related cytokine response in the ileum tissues., Heba M. Abdel-Haleem, Shawky M. Aboelhadid, Thabet Sakran, Gamal El-Shahawy, Huda El-Fayoumi, Saleh Al-Quraishy, Abdel-Azeem S. Abdel-Baki., and Obsahuje bibliografii