The photosynthetic performances of regenerated protoplasts of Bryopsis hypnoides, which were incubated in seawater for 1, 6, 12, and 24 h, were studied using chlorophyll (Chl) fluorescence and oxygen measurements. Results showed that for the regenerated protoplasts, the pigment content, the ratios of photosynthetic rate to respiration rate, the maximal photosystem II (PSII) quantum yield (Fv/Fm), and the effective PSII quantum yield (ΦPSII) decreased gradually along with the regeneration progress, indicated that during 24 h of regeneration there was a remarkable reduction in PSII activity of those newly formed protoplasts. We assumed that during the cultivation progress the regenerated protoplasts had different photosynthetic vigor, with only some of them able to germinate and develop into mature thalli. The above results only reflected the photosynthetic features of the regenerated protoplasts at each time point as a whole, rather than the actual photosynthetic activity of individual aggregations. Further investigation suggested a relationship between the size of regenerated protoplasts and their viability. The results showed that the middle-sized group (diameter 20-60 μm) retained the largest number of protoplasts for 24 h of growth. The changes in Fv/Fm and ΦPSII of the four groups of differently sized protoplasts (i.e. < 20, 20-60, 60-100, and > 100 μm) revealed that the protoplasts 20-60 μm in diameter had the highest potential activity of the photosynthetic light energy absorption and conversion for several hours. and F. Lü, G. C. Wang, J. F. Niu.
In search for new forestation tree species for future Central European climate conditions, Mediterranean evergreen oak taxa are investigated for their summer drought- and winter frost-hardiness. Here we report on the winter performance of the photosynthetic apparatus of Quercus × hispanica Lam. and its evergreen parental species Q. suber L. under extraordinary harsh winter conditions. Both taxa showed a strong decline of photosystem II (PSII) quantum efficiency (Fv/Fm) with a concomitant increase in the deepoxidation state (DES) of the xanthophyll pigments depending on (severe) frost events during winter, and these parameters significantly correlated with minimum air temperatures during periods of chronic photoinhibition at mid-winter, but not at the onset of winter in response to the first frost nights. Fv/Fm and DES correlated with each other in both taxa throughout the winter. and V. Holland, W. Brüggemann.
Picea glehnii Masters can grow in strongly acidic volcanic ash soil (pH 3.6) in northern Japan. We compared needle longevity, photosynthetic rate, and concentrations of elements in needles, in mature trees of P. glehnii growing in volcanic ash soil and in brown forest soil (pH 5.4). P. glehnii growing in volcanic ash soil showed suppressed photosynthetic rate and growth by the deficiency in nitrogen compared with its growth in brown forest soil. However, the younger needles of P. glehnii growing in volcanic ash soil maintained a high photosynthetic rate, as a result of large amounts of remobilized nitrogen from senesced needles. Needles of P. glehnii growing in volcanic ash soil did not show deficiencies in Ca, Mg, or K. Moreover, Al was at low levels in the needles, suggesting that P. glehnii was able to avoid Al toxicity by Al exclusion. P. glehnii thus exhibits great ability to adapt to an acidic environment. and M. Kayama, F. Satoh, T. Koike.
Pulses of rainfall are particularly pivotal in controlling plant physiological processes in ecosystems controlled by limited water, and the response of desert plants to rainfall is a key to understanding the responses of desert ecosystems to global climatic change. We used a portable photosynthesis system to measure the responses of the diurnal course of photosynthesis, light-response curves, and CO2-response curves of two desert shrubs (Nitraria sphaerocarpa Maxim. and Calligonum mongolicum Turcz) to a rainfall pulse in a desert-oasis ecotone in northwestern China. The photosynthetic parameters, light- and CO2-response curves differed significantly before and after the rainfall pulse. Their maximum net photosynthetic rate (PN) values were 23.27 and 32.92 μmol(CO2) m-2 s-1 for N. sphaerocarpa and C. mongolicum, respectively, with corresponding maximum stomatal conductance (gs) values of 0.47 and 0.39 mol(H2O) m-2 s-1. The PN of N. sphaerocarpa after the rainfall was 1.65 to 1.75 times the value before rainfall, whereas those of C. mongolicum increased to approximately 2 times the prerainfall value, demonstrating the importance of the desert plants response by improving their assimilation rate to precipitation patterns under a future climate., B. Liu, W. Z. Zhao, Z. J. Wen., and Obsahuje bibliografii
To explore the effects of water column nutrient loading on photosynthesis of the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June to October), we determined the diurnal and seasonal variation in rapid light curves of plants cultivated under 4 different nutrient concentrations (N-P [mg L-1]: (1) 0.5, 0.05; (2) 1.0, 0.1; (3) 5.0, 0.5; (4) 10.0, 1.0). Nutrient concentration significantly affected the magnitude of the rapid light curves of V. natans, but not the direction of their diurnal variations. At low nutrient conditions (N-P 1 [mg L-1]: 0.5, 0.05), the maximum relative electron transport rate (rETRmax) and minimum saturating irradiance (Ek) derived from rapid light curves were significantly lower than those of other treatments, and their seasonal variations were suppressed. These results indicated that photosynthesis of V. natans was inhibited by the lack of nutrients in water column. At high nutrient conditions (N-P 4, [mg L-1]: 10.0, 1.0), there was an increase in photosynthetic rate in the light-limited region of rapid light curve (α), and a decrease in rETRmax and Ek, relative to moderate nutrient conditions (N-P 2, [mg L-1]: 1.0, 0.1). In addition, at high nutrient concentrations, the rapid light curves of V. natans reached a plateau, and then markedly declined compared with those at the lower nutrient levels, especially in July and August. These results suggested that V. natans were adapted to low-light environments in the high-nutrient loading treatment., X. L. Cai ... [et al.]., and Obsahuje bibliografii
Pasture soils in the Amazon become unsustainable after a short period of use, typically being replaced by emergent secondary vegetation (capoeira). The aim of this research was to investigate the photosynthetic capacity and water use in the most common tree species (Vismia japurensis, Vismia cayennensis, Bellucia grossularioides, Laetia procera, and Goupia glabra) in successional chronosequence. This study was carried out in secondary vegetation area with ages that vary between 1 and 19 years. Responses of gas exchange were determined during different periods of precipitation. The gas exchange decreased with advancing age of the vegetation (1-19 years), except for G. glabra. Negative relationships of PNmax as a function of aging observed for V. japurensis, V. cayennensis, B. grossularioides, and L. procera exhibited r2 equal to 0.59, 0.42, 0.33, and 0.58, respectively. The species of Vismia showed higher values for photosynthetic parameters in relation to other species across the chronosequence. Overall, there were differences in gas exchange only for some species between the different periods of precipitation. Therefore, our results suggest a distinct pattern of photosynthetic responses to species in early succession. Light decrease can exert a decisive role to reduce the photosynthetic rates in secondary succession species. On the other hand, the results of WUE showed weak evidence of changes for the species during dry and rainy periods in the abandoned pasture in central Amazonia. and C. E. M. Silva, J. F. C. Goncalves, E. G. Alves.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48' N, 112°33' E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (gs), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, gs was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (Ca) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level. and M. Li ... [et al,.].
Flooding is common in lowlands and areas with high rainfall or excessive irrigation. A major effect of flooding is the deprivation of O2 in the root zone, which affects several biochemical and morphophysiological plant processes. The objective of this study was to elucidate biochemical and physiological characteristics associated with tolerance to O2 deficiency in two clonal cacao genotypes. The experiment was conducted in a greenhouse with two contrasting clones differing in flood tolerance: TSA-792 (tolerant) and TSH-774 (susceptible). Leaf gas exchange, chlorophyll (Chl) fluorescence, chemical composition and oxidative stress were assessed during 40 d for control and flooded plants. Flooding induced a decrease in net photosynthesis, stomatal conductance and transpiration of both genotypes. In flood conditions, the flood-susceptible clone showed changes in chlorophyll fluorescence, reductions in chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Flooding also caused changes in macro- and micronutrients, total soluble sugars and starch concentrations in different plant organs of both genotypes. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (PN) for flooded plants were similar for both genotypes. In flood conditions, the flood-susceptible clone exhibited (1) nonstomatal limitations to photosynthesis since decreased in maximum potential quantum yield of PSII (Fv/Fm) values indicated possible damage to the PSII light-harvesting complex; (2) oxidative stress; (3) increased leaf chlorosis; and (4) a reduction in root carbohydrate levels. These stresses resulted in death of several plants after 30 d of flooding., F. Z. Bertolde ... [et al.]., and Obsahuje bibliografii
We investigated the physiological and biochemical differences in Pterocarpus indicus and Erythrina orientalis grown in four sites at different pollution levels in the Philippines: Makati, Pasig and Quezon (high pollution levels; HP) located in Metro Manila, and La Mesa Watershed (a non-polluted area; NP). Among these four areas, HP sites had higher net photosynthetic rates (PN) than NP sites, except for Makati. Among HP sites, Makati and Quezon had the lowest PN for P. indicus and E. orientalis, respectively. Chlorophyll (Chl) contents were significantly lower in HP than in NP sites. Trees in Makati had the lowest Chl contents among HP sites, and P. indicus had higher Chl contents than did E. orientalis. In addition, the chloroplasts in HP trees had small starch grains with numerous dark, large plastoglobuli. Furthermore, antioxidant enzymes, indicative of the defense mechanism, showed a significantly higher activity in HP than in NP trees. and S. G. Baek, S. Y. Woo.
Morphological and physiological traits of Crepis pygmaea L. subsp. pygmaea and Isatis apennina Ten. ex Grande growing at different altitudes in the Gran Sasso Massif (Abruzzo, Italy) were analyzed. The two populations of C. pygmaea and I. apennina growing at the highest altitude (Cp2 and Ip2 at 2,310 m a.s.l. and 2,350 m a.s.l., respectively) had a lower leaf mass area (LMA) than the two populations growing at the lowest altitude (Cp1 and Ip1 at 2,250 m a.s.l. and 2,310 m a.s.l., respectively). Leaf tissue density (LTD) had the same LMA trend, decreasing 23 and 10% in C. pygmaea and I. apennina, respectively, from the highest to the lowest altitude. C. pygmaea and I. apennina had the highest photosynthetic rates
(PN) in July decreasing on an average 17 and 30%, respectively, in August and 50 and 38%, respectively, in September. Leaf respiration (R) in Ip1 and Ip2 had the same trend as Cp1 and Cp2, showing the highest rates in September. Global warming could drive C. pygmaea and I. apennina toward higher altitudes in the Gran Sasso Massif. Nevertheless, C. pygmaea with the higher plasticity index (PI) both at physiological and at morphological levels (0.50 and 0.35, respectively) might have a competitive advantage over I. apennina over the long term., L. Gratani ... [et al.]., and Obsahuje bibliografii