Three winter wheat (Triticum aestivum L.) cultivars, representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental conditions. Net photosynthetic rate (PN) per unit leaf area and instantaneous water use efficiency (WUE) of flag leaves increased with elevated CO2 concentration. With an increase in CO2 concentration from 360 to 720 µmol mol-1, PN and WUE of Jingdong 8 (released in 1990s and having the highest yield) increased by 173 and 81 %, while those of Nongda 139 (released in 1970s) increased by 88 and 66 %, and Yanda 1817 (released in 1945, with lowest yield) by 76 and 65 %. Jingdong 8 had the highest PN and WUE values under high CO2 concentration, but Yanda 1817 showed the lowest PN. Stomatal conductance (gs) of Nongda 139 and Yanda 1817 declined with increasing CO2 concentration, but gs of Jingdong 8 firstly went down and then up as the CO2 concentration further increased. Intercellular CO2 concentration (Ci) of Jingdong 8 and Nongda 139 increased when CO2 concentration elevated, while that of Yanda 139 increased at the first stage and then declined. Jingdong 8 had the lowest Ci of the three wheat cultivars, and Yanda 1817 had the highest Ci value under lower CO2 concentrations. However, Jingdong 8 had the highest PN and lowest Ci at the highest CO2 concentration which indicates that its photosynthetic potential may be high. and H. Q. Liu ... [et al.].
We examined differences in net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), ratio of substomatal to atmospheric CO2 concentration (Ci/Ca), cuticle thickness (CT), epidermis cell size (ECS), mesophyll cell size (MCS), vascular bundle size (VBS), tissue density (TD), and coefficient of water loss (k) in Sabina vulgaris as related to sex, shoot form, and leaf form. PN, E, WUE, Ci/Ca, MCS, VBS, and k varied with sex, whereas CT, ECS, and TD did not. These differences in physiology and anatomy between the female and male plants may be closely related with their reproduction behaviour. PN, E, Ci/Ca, CT, ECS, MCS, and VBS were significantly smaller in the erect shoots than in the prostrate shoots, WUE was just opposite; TD and k did not vary with shoot form. These changes in physiology with shoot form indicate that erect shoots may be more tolerant of water stress than prostrate shoots. PN, E, Ci/Ca, TD, and k were significantly greater in the spine leaves than in the scale leaves, whereas WUE, CT, ECS, MCS, and VBS followed the opposite trends. The changes in physiology and anatomy with leaf form suggest that scale leaves have higher drought-resistant and water-holding capacities than spine leaves. Measurements of field gas exchange showed that three-year-old seedlings had lower drought-resistance and higher water loss than five-year-old seedlings, which provides some evidence that seedling survival decreases with decreasing plant age. and W. M. He, X. S. Zhang, M. Dong.
Gas exchange, photochemical efficiency, and leaf water potential (Ψl) of Salix matsudana (non-indigenous species), S. microstachya and S. gordejevii (indigenous species) were studied in Hunshandak Sandland, China. Ψl of all the three species decreased from 06:00 to 12:00, and increased afterwards. S. matsudana showed higher values of Ψl than others. Net photosynthetic rate (PN) and stomatal conductance (gs) of S. matsudana were the lowest among all, with the maximum PN at 10:00 being 75% of that of S. gordejevii. Compared with the indigenous species, the non-indigenous S. matsudana had also lower transpiration rate (E) and water use efficiency (WUE). The values of Fv/Fm in all the species were lower from 06:00 to 14:00 than those after 14:00, indicating an obvious depression in photochemical efficiency of photosystem 2 in both non-indigenous and native species. However, it was much more depressed in S. matsudana, the non-indigenous tree. PN was positively correlated to gs and negatively related to Ψl. The relationship between gs and vapour pressure difference (VPD) was exponential, while negative linear correlation was found between gs and Ψl. and M. Z. Liu ... [et al.].
In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (PN) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with PN negatively associated with intercellular CO2 concentration (Ci), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, gs) and with gs, but positively with Ci and Ci/Ca. The later parameters negatively correlated with leaf WUE. Across cultivars, both PN and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model. and M. A. El-Sharkawy, S. M. de Tafur.
Forty two-month-old plants of Dalbergia sissoo and D. latifolia were subjected for 56 d to water deficit induced by withholding water. Drought stress caused a significant reduction in plant height, stem diameter, net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) in both species, but the reduction was greater in D. sissoo than in D. latifolia. Water use efficiency (PN/E) was adversely affected due to water stress only in D. latifolia, and intrinsic water use efficiency (PN/gs) was increased in both species. There was a slight effect of water stress on variable to maximum fluorescence (Fv/Fm) (quantum yield of photosystem 2) in both species, but the species did not differ significantly in this attribute. and M. Ashraf ... [et al.].
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg-1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (PN), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on PN was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply. and M. Ashraf, Ashfaq Ahmad, T. McNeilly.
Variability in leaf gas-exchange traits in thirteen soybean (Glycine max L. Merr) genotypes was assessed in a field experiment conducted at high altitude (1 950 m). Leaf net photosynthetic rate (PN) exhibited a high degree of variability at all the growth stages studied. PN and other gas-exchange parameters exhibited a seasonal pattern that was similar for all the genotypes. PN rate was highest at seed filling stage. PN was positively and significantly associated with aboveground dry matter and seed yield. The area leaf mass (ALM) exhibited a strong positive association with leaf PN, aboveground dry matter, and seed yield. The positive association between ALM, PN, and seed yield suggests that this simple and easy to measure character can be used in breeding programmes as a surrogate for higher photosynthetic efficiency and eventually higher yield.
A controlled growth chamber experiment was conducted to investigate the short-term water use and photosynthetic responses of 30-d-old carrot seedlings to the combined effects of CO2 concentration (50-1 050 µmol mol-1) and moisture deficits (-5, -30, -55, and -70 kPa). The photosynthetic response data was fitted to a non-rectangular hyperbola model. The estimated parameters were compared for effects of moisture deficit and elevated CO2 concentration (EC). The carboxylation efficiency (α) increased in response to mild moisture stress (-30 kPa) under EC when compared to the unstressed control. However, moderate (-55 kPa) and extreme (-70 kPa) moisture deficits reduced α under EC. Maximum net photosynthetic rate (PNmax) did not differ between mild water deficit and unstressed controls under EC. Moderate and extreme moisture deficits reduced PNmax by nearly 85 % compared to controls. Dark respiration rate (RD) showed no consistent response to moisture deficit. The CO2 compensation concentration (Γ) was 324 µmol mol-1 for -75 kPa and ranged 63-93 µmol mol-1 for other moisture regimes. Interaction between moisture deficit and EC was noticed for PN, ratio of intercellular and ambient CO2 concentration (Ci/Ca), stomatal conductance (gs), and transpiration rate (E). PN was maximum and Ci/Ca was minimum at -30 kPa moisture deficit and at C a of 350 µmol mol-1. The gs and E showed an inverse relationship at all moisture deficit regimes and EC. Water use efficiency (WUE) increased with moisture deficit up to -55 kPa and declined thereafter. EC showed a positive influence towards sustaining PN and increasing WUE only under mild moisture stress, and no beneficial effects of EC were noticed at moderate or extreme moisture deficits. and A. Thiagarajan, R. R. Lada.
Under constant salinity we analysed the leaf characteristics of Laguncularia racemosa (L.) Gaertn. in combination with gas exchange and carbon isotopic composition to estimate leaf water-use efficiency (WUE) and potential nitrogen-use efficiency (NUE). NaCl was not added to the control plants and the others were maintained at salinities of 15 and 30 ‰ (S0, S15, and S30, respectively). Leaf succulence, sodium (Na), nitrogen (N), and chlorophyll (Chl) contents increased under salinity. Salinity had a negative impact on net photosynthetic rate (PN) and stomatal conductance (gs) at high and moderated irradiances. Potential NUE declined significantly (p<0.05) with salinity by 37 and 58 % at S15 and S30, respectively, compared to S0 plants. Conversely, compared to S0 plants, PN/gs increased under saline conditions by 12 % (S15) and 50 % (S30). Thus, WUE inferred from PN/gs was consistent with salinity improved short-term WUE. Long-term leaf WUE was also enhanced by salinity as suggested by significantly increased leaf δ13C with salinity. Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity. Conversely, decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.
Upland cotton (Gossypium hirsutum L.) can move leaves to track the sun throughout the day, so-called leaf diaheliotropic movement. This paper reports an experimental test of the hypothesis that leaf diaheliotropic movement in upland cotton can enhance carbon assimilation and not increase the risk of stress from high energy load. In this experiment, cotton leaves were divided into two groups: one was that leaves could track the sun freely; another was that leaves were retained to the horizontal position. The diaheliotropic leaves recorded higher incident irradiance than the restrained ones, especially in the morning and late afternoon. Compared with restrained leaves, diaheliotropic leaves were generally warmer throughout the day. As expected, diaheliotropic leaves had significantly higher diurnal time courses of net photosynthetic rate (PN) than restrained leaves, except during 14:00-18:00 of the local time. Higher instantaneous water-use efficiency (WUE) was observed in diaheliotropic leaves in the early morning and late afternoon than in the restrained leaves. During the given day, diaheliotropic and restrained leaves had similar diurnal time courses of recovery of maximal quantum yield of PSII photochemistry (Fv/Fm). Diaheliotropic leaves recorded lower or similar photochemical quenching coefficient (qp) than restrained leaves did throughout the day. These results suggest that cotton leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition. and Y.-L. Zhang ... [et al.].