In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus. The feedback parameters are obtained by solving a Riccati equation. By constructing a common Lyapunov function, some sufficient conditions are established to guarantee that each agent can track the active leader by assumption that interconnection topology is undirected and connected. We also point out that some results can be generalized to a class of directed interaction topologies. Moreover, the input-to-state stability (ISS) is obtained for multi-agent system with variable interconnection topology and communication delays in a disturbed environment.
In this paper, we investigate multi-agent consensus problem with discrete-time linear dynamics under directed interaction topology. By assumption that all agents can only access the measured outputs of its neighbor agents and itself, a kind of distributed reduced-order observer-based protocols are proposed to solve the consensus problem. A multi-step algorithm is provided to construct the gain matrices involved in the protocols. By using of graph theory, modified discrete-time algebraic Riccati equation and Lyapunov method, the proposed protocols can be proved to solve the discrete-time consensus problem. Furthermore, the proposed protocol is generalized to solve the model-reference consensus problem. Finally, a simulation example is given to illustrate the effectiveness of our obtained results.