In this paper, we introduce six basic types of composition of ternary relations, four of which are associative. These compositions are based on two types of composition of a ternary relation with a binary relation recently introduced by Zedam et al. We study the properties of these compositions, in particular the link with the usual composition of binary relations through the use of the operations of projection and cylindrical extension.
It is well known that the linear extension majority (LEM) relation of a poset of size n≥9 can contain cycles. In this paper we are interested in obtaining minimum cutting levels αm such that the crisp relation obtained from the mutual rank probability relation by setting to 0 its elements smaller than or equal to αm, and to 1 its other elements, is free from cycles of length m. In a first part, theoretical upper bounds for αm are derived using known transitivity properties of the mutual rank probability relation. Next, we experimentally obtain minimum cutting levels for posets of size n≤13. We study the posets requiring these cutting levels in order to have a cycle-free strict cut of their mutual rank probability relation. Finally, a lower bound for the minimum cutting level α4 is computed. To accomplish this, a family of posets is used that is inspired by the experimentally obtained 12-element poset requiring the highest cutting level to avoid cycles of length 4.
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.